Category Archives: Marine Debris

Unsolved Mystery – January 2018

Marine debris COASSTers Jenny and Jesse encountered this “Big gooey blob that could not be pulled apart (Stunk!!!)” during their November survey of Oceanside.
As you can see from our ideas, this item has the COASST office stumped:

“Undead woolly blanket”
“No idea”
“Chunk of flesh”
“Wildling robe fragment”
“Sheep’s clothing shed by a liberated wolf”

Do you know what it is? Please post a comment here or send a message to coasst@uw.edu.

The what, why and future of bird tagging

We need your input! COASST is looking for a new way to track individual birds over time — an alternative to plastic cable ties.

Why do we track individual birds anyway? Tagging prevents re-counting a bird on subsequent surveys as though it were a “new” find, and allows us to document re-find rates, persistence, and scavenging of individual carcasses—all pieces of information that are used to estimate deposition and mortality of birds given what was encountered during surveys.

Colorful wool yarn can form a sequence similar to zip ties that stays in order when tied as shown above.

The effort to identify a new tagging solution was catalyzed by a letter and sample wool yarn kit from Mendocino COASSTer Deb. For the past year, COASSTers on the Kenai Peninsula (AK) and near Sequim (WA) (communities that were especially eager to use a new material) have been testing and providing feedback on kits modeled after Deb’s.

This bird was re-found three months after originally tagged—with the yarn still readable as “orange, grey”

Initial result: yarn provides the right balance of durability and readability, but is quite difficult to apply with gloved hands and in windy conditions.

We’re not yet convinced that transitioning to yarn COASST-wide will work, and are hoping to identify a system that is environmentally responsible and practical on the beach.

Actually, the solution needs to meet a few criteria:

  • Easy to source
  • Inexpensive–we tag thousands of birds a year
  • Unique-ability
    • How can we distinguish one tag from other tags? (e.g. color, number, writing)
  • Durability—lasting but not forever
    • Unique and “readable” for at least 6 months, and doesn’t fall off easily
  • Easy to use in COASST survey conditions (windy, damp, cold hands, gloves)
  • Low environmental impact– what happens to the material after the bird is fully decomposed and washed away?
    • Biodegradable
    • Not mistaken for food by other animals

Two new interns, Lex (left) and Yunbo (right) have joined COASST to help develop and implement an alternative to cable ties.

Enter Lex and Yunbo, two University of Washington Program on the Environment Students who are taking on this challenge for their senior capstone project. The duo will be evaluating potential materials over the upcoming winter quarter.

Right now, they are assembling a list of potential bird tagging materials, and would like to hear from you!

If you have an idea in addition to the starting list below, contacts for potential manufacturers, sources of potential solutions OR If you have an interest in trialing materials that pass the Lex and Yunbo test…

please leave a comment on this blog or contact us by email at coasst@uw.edu with subject: BIRD TAGGING SOLUTION

We will be ordering samples before the start of winter quarter (next week)—so please send us your thoughts as soon as possible!

Below is the current list.

Most promising ideas:

  • Colored hemp twine – natural material that biodegrades, but stiffer and potentially easier to use than yarn
  • Colored waxed cotton yarn – stiffer and potentially easier to use than un-waxed yarn
  • Biodegradable flagging tape – comes in different colors, easy to tie

Ideas with obvious draw-backs:

  • Sci-Ties – biodegradable cable ties that have been patented but are not yet in production
  • Pipe Cleaners – colorful options are made of plastic. Cotton comes in only one color. May not stay on bird
  • Wikki Stix – made of synthetic fiber, heavily coated with food grade wax — may last too long in the environment
  • Paper Twist Ties – have a small metal wire center and have a paper covering. The paper would most likely degrade sooner than 6 months and would leave a metal wire
  • Metal Tags – tags with pre-stamped number sequences are available from a variety of sources but are cost prohibitive
  • Nail Polish – would be difficult when wet and rainy and would require feet. The applicator may get contaminated with sand etc.
  • Dyes/paint – messy, may/may not be durable, expensive
  • Compostable Stickers – will most likely not stick due to sandy or gritty surface of birds

Unsolved Mysteries – September 2017

Gary encountered this metal buoy at Diamond Creek near Homer, Alaska during his first survey in August. We’re wondering where and how this kind of buoy would be used.

Steel buoy found on the Kenai Peninsula, August 2017.

Craig documented this crab trap float fragment in May. Noticing the abundance of variably colorful foam buoys encountered during marine debris surveys made us wonder—do the colors signify anything? Are they painted for easy recognition by the owners?

Colorful float fragment found May 2017, Half Moon Bay Beach, WA.

Ann and Michael encountered this large plastic drum during their August survey of Flat point on Lopez Island, WA. What would this drum have contained?

Plastic drum found August 2017 on Lopez Island, WA.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please share your ideas in the comments!

Gooney Birds? Mollymawks? Albatross!

A recent spate of Black-footed Albatross finds along the north outer coast of Washington in May and June got us wondering about these majestic birds.

With a wingspan of two meters (!) or longer, albatross are the largest members of the Tubenose Foot-type Family (Procellariidae). In the North Pacific there are three species: the dark-bodied, dark-billed Black-footed Albatross; the light-bodied, Laysan Albatross with a “smokey eye”; and the larger, Short-tailed Albatross, distinguished from Laysan and Black-foots by an over-sized bubblegum pink bill (plumage of Short-tails varies with age).

What else might a COASSTer mistake an albatross for? Bald Eagles, Brown Pelicans, Great-blue Herons and Sandhill Cranes are all COASST finds with overlapping wingspans. But each of these birds can easily be distinguished by foot-type, and bill size and shape.

All of these large-bodied COASST finds have distinctively different feet.

A long-lived, monogamous bird, albatross begin breeding at age 5-10, and it takes two parents to raise a single chick. New pairs may require a few years of practice to “get it right.  After that, mates meet annually for a long breeding season: courtship and “re-acquaintance time” starts in November, eggs appear before the turn of the year, and chicks don’t fledge until mid-summer!

Like all members of the family, albatross have a keen sense of smell and can literally smell their prey from tens of kilometers away, a talent that suits these open ocean birds. Dinner for an albatross?  Neon flying squid, flying fish eggs (tobiko in sushi restaurants), and a range of small fish and shrimp-like organisms that come to the surface of the ocean at night.

Unfortunately, smelling their way to food puts albatross in harm’s way. Fishing vessels smell like floating restaurants, attracting albatross and their smaller relatives – shearwaters and Northern Fulmars – some of which become entangled or hooked in gear. Marine debris can also be deceptively appealing, as some plastics, after floating in the marine environment, adsorb and emit the same chemical (dimethyl sulfide) used by procellariiforms as a cue to identify prey. Not only that, floating debris can look like albatross prey (could you tell the difference between a squid mantle and a red lighter floating at the surface?). Young birds are especially susceptible. Dependent on their misled parents for food, chicks ingest plastics, filling their stomachs with indigestible objects they cannot regurgitate.

Photo: Claude Gascon. One theory to explain why albatross consume marine debris is prey mimicry. Oblong, ~5cm floating objects in the yellow to red color spectrum are squid mantle look-alikes.

Populations of Black-foots and Laysans number in the hundreds of thousands.  In contrast, Short-tails number less than ten thousand and are listed as “vulnerable” on the IUCN Red List (International Union for Conservation of Nature).

With a body that mimics a glider, albatross have the ability to soar tremendous distances.  Even while breeding on islands in the Hawaiian Island chain (Laysan and Black-foots) or southern Japan (Short-tails), breeding adults regularly visit North American waters.  Laysan’s appear to prefer coastal Alaska, whereas Black-foots fly due west to the Lower 48.

Breeding so far from our shores, and preferring the open ocean, you might think COASSTers would never find an albatross.  Not so!  In fact, Black-foots are among our top 30 species.  Peak Black-foot deposition is in the summer: May through August, just when adults are finishing breeding and chicks are coming off the colonies.  But the annual pattern is “irruptive.”  That is, in some years COASSTers are much more apt to find an albatross than in others.  In northern Washington, 2012 and 2017 were break-out years; in southern Washington, 2003, 2007 and 2012 were big.  The good news is that there doesn’t seem to be any trend towards higher numbers.

Although you’d have to walk pretty far, on average, to find an albatross on the beach, they do wash up regularly. Along the West Coast, Black-foots are about three times more prevalent on Washington outer coast beaches than along beaches to the south in Oregon and California. And Laysans are a truly rare find (photos are scaled to encounter rate). On the Aleutian Islands, the opposite is true.

Across the COASST dataset, albatross species wash up exactly where you would expect them to given at-sea sightings: Black-foots along the West Coast, and Laysan along the Aleutian Islands in Alaska. Although the total body count favors the lower 48 (note only 3 Laysan have been found in Alaska), it’s actually the encounter rate (carcasses per kilometer) that is important.  Remember, there are many more COASSTers along the outer coast of Washington, Oregon and California than there are in the Aleutian Islands!  The photographs in the figure above are scaled to species-specific encounter rate the—the chance of finding an albatross in the Aleutians is about the same as along the outer coast of Washington.

A closer look at Black-foot deposition pattern on the West Coast reveals two distinct aggregations: one associated with the entrance of the Strait of Juan de Fuca (we’re guessing these birds are associated with the Juan de Fuca eddy – an oceanographic feature south of the Strait), and a second larger aggregation surrounding the Columbia River.  Both the eddy and the “plume” of river water exiting the Columbia River into the Pacific Ocean are highly productive locations where a hungry chick or exhausted post-breeding adult can hunt pelagic prey.

When Black-foot encounter rates are broken down into smaller lengths of coastline (half a degree of latitude, or about 55 kilometers), it’s clear that some locations attract many more.

Moral of this story? If you hope to see an albatross on a COASST survey, head to the south outer coast of Washington during the summer and take a stroll along the sand.

Unsolved Mysteries – May 2017

This object was recorded as part of a COASST Marine Debris survey at Sunset Beach in Oregon. The text on the yellow label translates to “Warning! Sealed!” Do you know what it is? Perhaps the serial number is a clue.

If you have any ideas, please let us know your thoughts in the comments below, or send us an email at coasst@uw.edu.

 

Unsolved Mysteries – February 2017

These objects have washed in as part of COASST Marine Debris surveys.  Do you know what they are? If so, we’d love to have your help! Please let us know your thoughts in the comments below, or send us an email at coasst@uw.edu.

Michael and Laura found this red plastic part at Edmonds Marina in Washington.

This (part of the Millennium Falcon?) was found on a wilderness beach in Olympic National Park in Washington by Chiggers.

This large and heavily worn object was found by Sean and Becky at Beachside State Park in Oregon.

What’s Washed In – August 12, 2015

Hi COASSTers,

Summer signals COASST’s busy season, especially along the West Coast – exhausted breeders (and their chicks) arrive on COASST beaches beginning in July. Alan, who surveys Bob Creek and Stonefield Beach sounded the alarm about dozens of Common Murre chicks on Oregon South beaches. Staff at three partner organizations, Alaska Maritime National Wildlife Refuge (Leslie Slater), the International Pacific Halibut Commission (Tracy Geerneart), and Washington Sea Grant (Ed Melvin) alerted COASST to two wrecks in Alaska – murres near Homer, shearwaters, fulmars, and murres near St. George Island.

With the wreck season upon us, here are some helpful tips to expedite processing lots of birds:

  • after the 10th bird, don’t measure – record, tag, and photograph only
  • process birds as a group – record, tag, and photograph together: we sometimes bring a 5-gallon bucket along to assist with this
  • bring extra helping hands and delegate people to specific tasks: one person tags and measures, one person takes notes, one person takes photos and writes on slate

Watch out for those Alcid chicks! Below, we’ve profiled two sets of four birds – in each of the sets, one species is not the same as the others!

Let’s take a look:

ed090084-3aa1-4142-877c-ec13caec0bc8 f3b76984-d57a-4312-9fa1-5e3a9a1d70a9 82960287-5c62-46d1-bdd6-8158439f1a02 99b08e4d-3679-4952-8479-a03df958a135 (1)

 

 

 

 

 

 

 

 

 

 

 

 

Wing measurements (L to R): 13 cm, 20 cm, 12 cm, 11 cm

Credits (L to R): Grant and Kathy (Oregon Mile 102), Marc and Craig (Oregon Mile 313 S), Teresa and Danny (Pistol River, OR), Joann and Julie (Klipsan Beach, WA)

It’s photo THREE that’s different here (Ancient Murrelet). The rest are adult Common Murres. Here’s why:

Feet are pale, not dark, and the secondaries do not have white tips. In photos one and four, all murres are in molt. Wings look “stumpy” like those of a juvenile, except the face of all these birds is mostly dark. Check out the feather wear of the bird in photo one. Even though the chin is dark, we know this can’t be a juvenile – juveniles have fresh, dark plumage all over – this bird has worn plumage except for the head and new (growing) primaries.

5cb6d54e-013f-4e1c-8880-91920b88aee2 be6628fd-984b-4210-8dc8-b88d17035cf4 Coasst150 bd3a84dd-e2f8-41fa-9344-f97364ca3926 (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

Wing measurements (L to R): 29 cm, 28 cm, 42 cm, N/A

Credits (L to R): Terry (Clam Beach South, CA), Steven and Nancy (Coronado Shores, OR) Ken (Sarichef East, AK), Deborah (Homer Spit Middle, AK).

It’s photo THREE that’s different. The rest are Northern Fulmars. Here’s why:
Although the plumage is similar, the wing measurement is WAY too big for a fulmar (28-33cm). Compare the heel (joint at base of toes) of the bird in photo two with photo three – that’s the swollen heel of a Larid, a Large Immature Gull.

78caac70-2cca-4fd3-b946-3e27b95bac09

 

 

 

 

 

 

 

 

The mystery item from our last edition has been identified thanks to Ken and Art. As Art points out, “it is undoubtedly a butane powered micro brazing torch. Those things make great holiday gifts for the hard-to-buy-for crack or meth smoker, but they are also handy for electricians or mechanics with a need to heat something relatively small or delicate.”
5558a3ba-9950-4b73-8104-4af2c108acbe 7f50e230-0b8f-435a-b152-315561c79d28

 

 

 

 

This week Ken from Shishmaref encountered a noteworthy concentration of objects with Russian and Korean writing. We are still in the process of translating the Korean, but in the meantime thought we’d share with you some of his finds.

Russian translation student Sarah identified that the jar is from brand Медведь любимый, translated as “favorite bear,” a company that cans fruits and vegetables.

The tube shown here contained hand lotion from brand Белоручка, which translates to “small white hands” or kid-glove.

eecf7252-9ad9-417b-8d59-beb171765cd8

 

 

 

 

 

 

 

 

 

Check out the tubeworms that Keith found on his July survey in Ocean Shores (WA). Tubeworms anchor themselves to available substrates and secrete calcium carbonate, which forms the tubes that surround them. These tubes offer some protection from potential predators and other dangers. While there is still a lot to be researched about these unique animals, according to National Geographic, tubeworms have been around for at least 3 million years and can tell us a lot about the ocean’s history.

Seen something on the beach you’ve always wondered about? Send us a photo!

Cheers,
Erika, Julia, Jane, Hillary, Charlie, Heidi, Jenn, and the COASST Interns

What determines the path of marine debris through the ocean?

Physics! A combination of characteristics of the object, and the patterns of wind and ocean currents all play a role in where marine debris moves in the ocean. Why do we care? With two types of information–where debris winds up (on a COASSTER’s beach, for instance) and the influences of the movement of debris–we can determine where the object may have come from. This process can help to determine the sources of what’s washing in on our shores.

If we already know the source of marine debris and its beaching location, it can serve as a sort of “tracking device” or drifter. Following the devastating tsunami that struck Tohoku, Japan in 2011, models have been used to predict the path of the tons of debris that washed out to the ocean. The accuracy of these kinds of predictions depends on real, live information to verify and improve the methods.  COASST’s new marine debris program will collect this kind of data, taking into account the very characteristics of debris that play a part in how the object may move through the water.

Windage

Varying degrees of windage on example floats. Image originally appeared in NOAA Marine Debris documents about Tsunami Debris trajectories. http://marinedebris.noaa.gov/sites/default/files/Japan_Tsunami_Marine_Debris_Report.pdf

So how does it work? Ocean currents are important no matter what, but the influence of wind depends on characteristics like size, hollowness, dimensionality (is it flat?), and material (tells us about density). Obviously, hollow and less dense (buoyant) objects are likely to rest higher in the water than solid or heavy objects. The shape and volume of any hollow cavity influence how a floating object is affected by wind. The area of the object that sticks above the water, or “sail area” determines the degree that wind impacts the object’s movement. This is known as “windage”. High windage– where the majority of the object is above the surface of the water–results in an increase of wind force on the sail area, where wind patterns in addition to ocean currents play a role in the path. Just as it sounds, the sail area acts as a sail and catches the air current. Oppositely, the “drag area” is the part of the object that lies below the surface. For objects that are flat or float just below the surface, windage will be very low.

One outcome of drifting debris

Gyre

North pacific Subtropical Convergence Zone, courtesy of wikimedia commons

You may have heard of the North Pacific Gyre (NPG): a slow-moving spiral of converging ocean currents created by a high-pressure system of air currents. Within this convergence zone lies what is known as the Great Pacific Garbage Patch; millions of pounds of trash and plastic that extend for miles below and across the surface of the ocean. The massive accumulation of garbage comes from all over and is carried to the NPG by those very currents that converge there. Every piece of plastic that forms the “garbage island” got there by the forces of ocean and air currents. Objects with higher windage, tend not to accumulate in the Garbage Patch, as the wind sends them on their way.