Category Archives: Uncategorized

Unsolved Mystery 10/4/2017

COASSTer Rick found this biofouled item during his survey of Moore Creek South (Oregon) in September. If you know what it is, share your thoughts in the comments or by e-mailing coasst@uw.edu.

Here’s Rick’s description: “A cylinder with a rounded bottom and a detachable top.  Length is 16cm; lid is 4cm tall; diameter is 7cm.  Material is thick (4mm) translucent plastic.  A set of 3 vertical holes on the four sides with a hole in the top and bottom.  Has two attachment points on one side.”

Top view

Side view B

Side view A

A Closer Look at the Wrackline

The presence and composition of wrack (the seaweed and other material washed in on high tide) varies from beach to beach, day to day, and season to season. Looking through the kelp, crab molts, wood chips, or Velella velella that wash in provides a dynamic and fascinating window into the world just offshore.

Wrack piled high and in big lumps can obscure the likelihood of finding what we look for during COASST surveys. That’s why COASST keeps track of the proportion and continuity of beach zones, and in which zone birds or debris are encountered. With this information, we can better estimate the quantity of what washes in.

fir needles, feathers, plastic nurdles and fragments

So what’s in the wrack zone anyway, and how does it get there?

Much of what we find once grew and lived in the ocean. Macroalgae (seaweed) includes species that either float freely or are anchored to the seabed. The latter can be broken by waves during high energy storms, freeing it for transportation onshore by wind and tides.

Other material that ends up in the wrack lives or has sunk to the seabed, such as crab molts. Large waves can disturb the seabed and refloat these objects, which are then transported onshore. This is why wrack is thickest, and often contains the most variety, after large winter storms. At certain times of year, the wrack zone may also consist of a thick band of Velella vellela, the result of onshore wind that pushes these “by-the-wind sailors” onto beaches.

Velella velella, by-the-wind sailors

As wrack decomposes, it can stink. But it also provides the building blocks – nutrients and substrate – for the dune grasses that stabilize our beaches and provide habitat for nesting shorebirds. Additionally, it provides habitat and food for invertebrates like insects, crabs and sand-hoppers, species that are in turn eaten by birds and other critters up the food chain.

Clumps of wrack are surrounded by a cloud of beach hoppers. Yet, high-use tourist areas sometimes remove wrack, to the detriment of abundance and diversity of beach flora and fauna.

Here are a few of the species that COASSTers encounter in the wrack zone:

Gigartina exasperata, Turkish towel

Postelsia pamaeformis, sea palm

Zostera marina, eelgrass

 

Special thanks to Steve Morey, of theoutershores.com for sharing his beautiful photos with COASST. To see more of Steve’s photos of what washed into Oregon beaches, visit his website.

How do you report an oil spill?

On April 5, 2017, Michael started his very first beached bird survey on Jacobsen Jetty South near Tokeland in Pacific County, WA. April is usually a quiet time of year for COASST and COASSTers, with few beached birds other than the occasional Common Murre. However, in Michael’s first survey he literally found a smoking gun – a small oil spill on the beach. Fortunately, he had the presence of mind to document the spill with careful photos and description, which were transmitted to the COASST office, and from us to the WA Department of Ecology, the state agency in charge of handling these types of spills.

Photo Credit: M. Heikkinen

Dave Byers, the Oil Spill Response Section Manager at the WA Department of Ecology, informed us that two spill responders were dispatched to investigate and size-up the scene. Due to the large amount of oiled sediment and debris, Ecology hired a clean-up contractor to respond, remove and safely dispose of the contaminated material. Here they are in action!

Photo Credit: WA Dept of Ecology

The spill responders believe that the oil was from a waste-oil container that was tossed or washed overboard from a vessel.  It also appeared that oil from the container was intentionally emptied on the beach after the container washed ashore. It’s very lucky that Michael was there to document and report, and it’s a great reminder to always proceed with caution if you find a chemical container.

What should you do if you find a fresh oil or hazardous material spill on your beach?
Dave Byers at the WA Department of Ecology suggests documenting your location, the type and approximate volume (or areal spread) of oil, distance from the water, and what coastal resources are impacted by the oil. As always, carefully photo-document!! You can also use the COASST protocol for oiling (page 2-11, protocol version 3.0). All of this information will help authorities determine what resources are necessary for responding to the incident.

Any of the numbers below can be used to report the spill:

  • 1-800-OILS-911 works anywhere along the coast of North America.  It is a 24-hour hotline which will recognize where the call is originating and connect with the appropriate state or province Emergency Management Office.  This works in Alaska, British Columbia, Washington, Oregon and California.
  • 1-800-424-8802 connects you to the U.S. National Response Center. Information taken from callers is passed to the appropriate state and federal response agencies.
  • 1-800-258-5994 connects you 24/7 to Washington Emergency Management which serves as the after-hour dispatcher for Ecology Responders.

And of course, you can always call or email COASST, and we will also pass on your information.

Happy Holidays from COASST!

It’s amazing to us that we’ve zoomed through another year!  In fact, COASST is approaching our 20th year (if you count from the year of our first grant – 1998), and we’re stronger and better than ever.

Those decades have seen real changes.  We started with 12 pilot volunteers in Grays Harbor, Washington, before we had a protocol or a website, before our field guide was invented, and long before our office filled with students, staff and science collaborators.  Who knew that we’d last so long, grow so large (over 800 participants this year alone, and more than 3,000 trained since we started), or be able to contribute to so many fundamental issues in coastal ecosystem health and science?

Today, we are one of the most well-known citizen science programs delivering top notch science to the research and natural resource communities, and – importantly – back to the coastal communities from which all of our data come.  In fact, our model of citizen science – from our trainings to our data verification to our data visualizations to our holiday card (!) – has become the gold standard.

So hats off to all of you!  Without your passion for your beach, your love of the natural world, and your curiosity regarding how the coastal environment is changing (for better or worse), COASST wouldn’t exist.  This holiday season, bundle up and take a walk on your beach to celebrate our collective achievement, and remember there are hundreds of people like you in dozens of coastal communities up and down the West Coast of North America doing the same thing.

Happy Holidays!

Julia, Erika, Hillary, Tim, Charlie, Katie, and the COASST Interns

A Rare Marine Mammal Washed In

What do COASST staff do on their time off?  Walk the beaches, of course!

And it was on such an excursion that Charlie Wright, the COASST verifier, and his wife Linnaea – both expert birders and natural historians – happened upon a Blainville’s beaked whale.

The dolphin-like "beak" and absence of large teeth helped us conclude that this was a female Beaked whale.

The dolphin-like “beak” and absence of large teeth indicate that this is a female beaked whale.

A what?!?

Beaked whales are one of the oldest and most speciose lineages of cetaceans (whales, dolphins and porpoises), with 22 species documented to date.  Smaller than the large whales, and sometimes mistaken for dolphins, beaked whales have, as the name implies, a dolphin-like “beak” (or rostrum).  Vaguely sausage-shaped, they also sport short stubby flippers (front limbs), a small dorsal (back) fin, and a plain un-notched tail (also known as a fluke).  Males have two enormous teeth that look more like spade-shaped tusks, which they apparently use to fight other males for access to females.  These teeth vary by species and allow easy identification of males.  With no teeth to examine, the whale Charlie and Linnaea happened upon was a female.

Note the small dorsal fin!

Note the small dorsal fin.

Relatively unseen and unknown animals that range widely across the world’s oceans, beaked whales are deep divers that can submerge in the hunt for squid and deep-sea fish for over an hour.  No wonder people don’t often see them.  But they do wash ashore.  In fact, in 2014 a previously unknown species of beaked whale washed up on Zapadni Beach on St. George, Pribilof Islands (a COASST beach!).

All of the excitement over this rare find got us wondering, what kinds of marine mammals have COASSTers been recording over the years?  Although COASST doesn’t “officially” collect marine mammal data, since 1999 COASSTers have often reported what they find.  From 2000 through the present, just over 1,200 marine mammals were reported, most to group, like “seal” or “dolphin/porpoise.” Just over half (644) were identified to species.  In our new COASST protocol, we’ve added specifics about how to record and take photos of any beached marine mammal observed.

What can we say about these data?

First, we focused on the marine mammal carcasses identified to species.  These data are presented with numbers in parentheses under each photograph indicating the total count.  The winner?  Harbor seals, followed by sea otters and California sea lions.  Not a single beaked whale!  Notice that although there are slightly more species of cetaceans (8 in total compared to 7 pinnipeds), COASSTers are far more likely to find a pinniped (420 individuals versus only 63 for cetaceans).

Marine mammals reported by COASST volunteers and identified to species from 2000-present.

Marine mammals reported by COASST volunteers and identified to species from 2000-present.

Second, we mapped all of the species groups, from large whales to sea otters, as a function of location, from northern California north to the Bering and Chukchi Seas.  The “image collage” adjacent to each mega-region (we’ve combined the Strait of Juan de Fuca, Puget Sound and the San Juan Islands into “Salish Sea”) shows which species groups are found where.  The size of the photograph is proportional – bigger photos literally mean more of that group is found, and the image indicates which species in the group was identified most often.

In California, the group “sea lions and fur seals” dominate, with the vast majority of identified finds being California (of course!) sea lions.  North in Oregon and coastal Washington, “true seals” become more abundant in the finds identified to species.  In the Salish Sea, as many COASSTers can attest, harbor seals dwarf all other marine mammal finds. In fact, the chance of finding a harbor seal is not that much different from the chance of finding a beached bird (the recent Rhinoceros Auklet mortality event being an exception).

Sea otters, unknown from our California beaches and a true rarity along Oregon, become relatively more abundant along the Washington outer coast, and dominate the Gulf of Alaska beaches.

And then there are the finds in the Bering and Chukchi Seas.  Notice that the only photograph in common with the other COASST mega-regions is the sea otter, everything else is different.  “True seals” dominate, but the species isn’t harbor, it’s spotted.  Rather than sea lions, COASSTers in these regions are more likely to find fur seals.  Not surprising when you consider that the Pribilof Islands (home to 8 COASST beaches) support breeding rookeries of Northern fur seals numbering in the hundreds of thousands.

Marine mammal species abundance as a function of location, from northern California north to the Bering and Chukchi Seas.

Abundance by location, from northern California north to the Bering and Chukchi Seas.

Documenting beached marine mammals is an important objective for COASST.  So keep an eye out for the odd flipper, fluke or paw as you’re searching the beach.  With marine mammal populations shifting in abundance throughout the COASST range, we’re in the perfect position to create the definitive baseline.

A Lingering Summer on Lopez Island

jp-friend(Photo Credit: Gene Helfman)

Last weekend, amidst a blaze of late summer sun and warmth, I had the privilege to deliver a talk at the Lopez Library as part of the National Public Lands Day celebration co-hosted by the San Juans National Monument on Lopez and Kwiaht, among others, on COASST findings.  Our bird verifier, Charlie Wright, made an appearance the next day at the “Beer and Birds” event in Lopez Village.  Between us, we had the island well-covered.

COASSTers throughout our geographic range can attest to upticks in beachcast carcasses over the last several years, from Cassin’s Auklets along the outer coast of the lower 48, to Common Murres in Alaska, to Rhinoceros Auklets in Puget Sound and the Strait of Juan de Fuca.  There is really something serious going on, what with marine heat waves (aka “The Blob”) and El Niño shifting the marine food-web out from under the birds.

The graph below shows the long-term average “baseline” – the black line that looks like a heartbeat signal – annually from 2001 through to present for the outer coast of northern California through Washington state.  The pale gray bars represent the actual monthly signal across the years.  When the gray bars soar above the heartbeat baseline, that’s a “mass mortality event”.  You can see two things right away:
1. the frequency of mass mortality events is increasing – the time between them is decreasing.
2. they are getting more severe.

image001

COASST data have been essential in telling these stories – how many birds of which species are found where, and when.  Only the super-human efforts of many COASSTers, often toiling in adverse weather conditions, makes it possible to find out how far from normal things have become.  Then COASST staff and scientists leap into the next phase of working with our science and resource management colleagues to figure out what killed the birds.

For residents of the San Juan Islands, and other localities surrounding the eastern Strait of Juan de Fuca, this year’s big event has been untoward Rhinoceros Auklet mortality.  From Victoria to Orcas to Whidbey to Dungeness, Rhinos have been washing ashore.  COASST and all of our science partners have been closely following this event.  You can get the latest information here.  Saturday morning I went out with Lopez Island COASSTers Cathy and Daphne on a tour of some amazing and special sites along the southern headlands of that island.  A mix of National Monument, Park, and private land, these cliffs interspersed by pocket beaches offer a gorgeous view of the Olympics and Vancouver Island, and a beautiful late summer landscape of burnished grasses and wind-pruned Douglas firs.

This weekend we found exactly what COASSTers would predict – Rhinos!!  What was interesting was where we found them.  Rather than on the beach, all of the (many) carcasses we found were on the headlands overlooking the Strait of Juan de Fuca.  Large waves?  A better explanation was provided by Daphne and Cathy, who let me know that Bald Eagles regularly perched on the spots.  We had found a raptor “fast-food” restaurant littered with the well-plucked leavings of small Alcids.  How did we know they were Rhinos?  Of course, the telltale bill horn gave some carcasses away, as did the diagnostic pale stripe (looks like worn pipping on a well-loved couch) on the leading edge of the wing stretching from wrist to elbow.
img_1446 The diagnostic pale stripe is clearly visible along the edge of these two Rhino wings, which are from two different birds; which I discovered by looking carefully at the wingchord measurement and feather wear pattern. (Photo Credit: Julia Parrish)

unknownAlthough this bird is too-far gone to be a COASST bird (because the bill length can’t be accurately measured), it’s still easy to identify as a Rhinoceros Auklets by the prominent horn.  (Photo Credit: Cathleen J. Wilson)

An Update from Julia’s trip to Newfoundland

COASSTers!  Greetings from the south coast of Newfoundland, where I’m visiting the largest gannet (4-webbed!) colony in the province.  Here I am with Heidi Ballard, one of the COASST Advisory Board members.  It’s a bit of a windy day on Cape St. Mary’s, and the gannet are soaring in place over their colony.  Fabulous!  These birds are related to cormorants and pelicans (but, of course, you already knew that because of the Foot-type Family).

IMG_0678

While at the colony, Heidi and I had the chance to walk the cliffs in search of partridge berries (like small slightly sweet cranberries) and bake apple (gotta say, this bog berry is a Newfoundland original!).  Of course, I found the wing of a young gull, and remnants of murre eggs.  Ever a COASSTer!

IMG_0689

Newfoundland is a fantastic place for watching seabirds and whales, dining on cod, and touring through pristine sub-arctic wilderness.  The people are friendly and warm, and after I figured out that “turr” was actually “murre” we got along well!

IMG_0685

Cheers,

J

Alaska Murre Update

By now, you’ve likely heard the news of the startlingly high number of Common Murres washing ashore in Prince William Sound and beyond, as well as the reports of murres flying inland to the Mat-Su and elsewhere.  In fact, many of you have been out there on affected beaches in Homer, Seward and elsewhere counting the bodies and collecting our baseline data.  Thank you for those efforts, and particularly during the dead of winter.

We don’t know at this point why the murres are coming inshore, and why they are so stressed.  It is obvious that the huge die-offs reported after New Year’s day were exacerbated by a large storm that no doubt pushed many a bird past it’s limit, and definitely pushed all floating material up onto the beaches especially in long fjords (think Seward and Whittier).  There are many folks working on this story, including state, federal and tribal agencies, university scientists and others.  In fact, as we type this, many of those scientists are gathering in Anchorage at the Alaska Marine Science Symposium, where several talks will center on the murre story.

Each and every one of you should know that the COASST data in AK forms the baseline against which these elevated counted can be (and are being!) measured.  It is the data you and others before you patiently collected year in and year out that tells us exactly how many murres should normally be washing ashore (precious few!). Thank you!

Here is the latest infographic, showing the anecdotal reports that we’ve put together.

AK murre

2015 in review: Murres on the Beach

Goodbye 2015! You were a strange year for the North Pacific:  “the blob” stuck around, elevated numbers of Common Murres washed-in throughout the COASST range (and continue to in Alaska, see below),  harmful algal blooms, and lets not forget the Cassin’s Auklet wreck last winter. What does it all mean? COASST is working with partners up and down the coast to try to figure it out. We’re still assembling data from December, and January is in-progress, but here’s a look at the latest story that’s unfolding:

COMU Wreck 2015lower

COASST data show that the annual murre post-breeding mortality signal (August-September) was observed in Alaska and the lower 48 in 2015, and was particularly accentuated along the outer coast of Washington and the northern coast of Oregon.

But in the Gulf of Alaska…

Elevated murre mortality levels occurred both before and after the breeding season, creating a continuous signal stretching from May through to present (December).

COMU Wreck 2015 for Heather_HKB

Maximum COASST beach counts (red circles) are significantly higher than the 2015 monthly averages (yellow circles), and maximum anecdotal reported counts are 1-2 orders of magnitude above that.

Many thanks to our intrepid, dedicated participants who are braving long days on rugged beaches to document the extent and magnitude of this mortality event!

Connections from the Past

You just never know when a past connection is going to resurface.  Kevin Bacon may be 6 steps removed from me, but Kyle Frischkorn, a PhD candidate in biogeochemistry at Columbia University and a budding science communicator is only 4.  This week Kyle published his first science communication article on the COASST program.  Woohoo!!

What’s the connection between a West Coast professor of “seabird science” and an East Coast “molecular oceanographer” studying nitrogen-fixing cyanobacteria with a hankering to expand his science domain into public communication?

In academics, it’s all in the pedigree.  Kyle was an undergrad at the University of Washington who signed up for my Marine Biology course.  And part of that class is a weekend field trip (imagine 5 weekends with 25 freshmen and sophomores who think of the ocean as the thing you lie next to when you go to the beach, all crammed into vans on a early Saturday morning on the way to a salty science adventure – introduced species on the mud flats, invertebrate sampling in the rocky intertidal, 24 hour plankton tows, dead birds on the beach – and you can begin to get an idea…).

Kyle’s first choice was a weekend on the UW Oceanography research vessel Thomas G. Thompson.  When do students ever get their first choice?  He ended up on the beached bird field trip.  Turns out that a beachcast bird is a lot like any other drifter that oceanographers might use to understand ocean currents.  What had started out in his mind as a waste of time suddenly became a cool way to figure out more about ocean flow.  Lightbulb moment!

And, it opened a door in his academic path and in his future career.  From marine biology, to a cool capstone project with marine bacteria to a PhD project at Columbia to a realization that reaching out to the public about how cool science can be is something all scientists should do.

So when Kyle called COASST a few months ago to ask whether he could write his first story about COASST and identified his pedigree back to the COASST field trip in Marine Biology, I was thrilled.  Because you never know when the “pay it forward” every professor hopes to gift their students with will turn into a “pay it back.”  Thanks Kyle!

— Julia K. Parrish, COASST Executive Director