Grebe Time

COASSTers surveying along the Lower 48 West Coast know that winter brings cold, darkness, rain… and grebes. This winter season, COASST has received a flurry of messages about an uptick in beachcast grebes. Is this normal? Is something going on? The answers are yes, and yes.

Grebes breed inland on freshwater lakes and ponds throughout western North America, migrating to coastal locations post-breeding from the Gulf of Alaska south to Mexico, and including inside waters like the Salish Sea, San Francisco Bay, and the Gulf of California. By November, the chance of encountering a grebe along the Pacific Northwest outer coast has risen from essentially zero to about one grebe per 5 kilometers. And that’s the average, some places and some years see much higher spikes.

The black line traces the average or “baseline” pattern of how many grebes are found per kilometer of beach length over the year (where numbers less than one mean you would need to walk more than a kilometer to find a grebe). The yellow area to either side of the line is the range over which 95% of the actual variability in that central signal lies. If we record a month and year that is absolutely lower (or higher) than the yellow area, we pay attention.

Most of the grebes washing ashore on COASST beaches are large grebes, and most of those are Western Grebes. The pie charts in the map graphic indicate the proportion of grebes found in each region identified to species. Dark blue is Western, turquoise is Clark’s, and light blue is when we can’t tell the difference.

What?!? Are we really that bad at identification? Nope. Turns out that a headless large grebe is impossible to differentiate as Western or Clark’s. And that’s because the best character is whether the dark|light plumage line on the face puts the eye in the dark feathers (Western) or the white feathers (Clark’s).

Side note: headless grebes, or more commonly a grebe with the neck skin inverted and pulled over the face so that only the bill is poking out from this macabre inside out turtleneck are the victims of raptors who literally skin their dinner to expose the breast meat. Light blue pie slice? – that’s a raptor signal.

There are several really cool patterns to note in this graphic:

  • First, the proportion of the grebe pie that is Western or Clark’s is HUGE – almost every grebe found along the outer coast is one or the other.
  • Second, the “raptor signal” is also pretty large, especially in California.
  • Third, the chance of finding a beachcast grebe is vastly different, depending on where you are. From November-February (i.e. the peak season for Grebes) you need only walk ~3 km in California to find a grebe on average, whereas in Puget Sound it’s a much longer trek: 115 km of beach before finding a grebe. And there’s a south to north pattern – more towards the south, less as you go north, and a serious decline as you round the corner into the Salish Sea.
  • Fourth, while the Salish Sea may not have as many grebe carcasses on beaches, the variety – the biodiversity – of grebes is much higher. Horned Grebes, Pied-billed Grebes, even Eared Grebes wash in. Want a chance of finding a Red-necked Grebe? Eschew the outer coast and head for the Strait of Juan de Fuca.

When the days start to lengthen and winter loses it’s grip on the Pacific Northwest, grebes stop washing in. By March-April, a grebe carcass is a very rare occurrence on a COASST beach. And that’s because these long-necked divers have left their seaside wintering grounds for their freshwater breeding sites, where they’ll build a floating nest, raise a brood, and start the migratory cycle all over again.

Happy Holidays from COASST!

It’s amazing to us that we’ve zoomed through another year!  In fact, COASST is approaching our 20th year (if you count from the year of our first grant – 1998), and we’re stronger and better than ever.

Those decades have seen real changes.  We started with 12 pilot volunteers in Grays Harbor, Washington, before we had a protocol or a website, before our field guide was invented, and long before our office filled with students, staff and science collaborators.  Who knew that we’d last so long, grow so large (over 800 participants this year alone, and more than 3,000 trained since we started), or be able to contribute to so many fundamental issues in coastal ecosystem health and science?

Today, we are one of the most well-known citizen science programs delivering top notch science to the research and natural resource communities, and – importantly – back to the coastal communities from which all of our data come.  In fact, our model of citizen science – from our trainings to our data verification to our data visualizations to our holiday card (!) – has become the gold standard.

So hats off to all of you!  Without your passion for your beach, your love of the natural world, and your curiosity regarding how the coastal environment is changing (for better or worse), COASST wouldn’t exist.  This holiday season, bundle up and take a walk on your beach to celebrate our collective achievement, and remember there are hundreds of people like you in dozens of coastal communities up and down the West Coast of North America doing the same thing.

Happy Holidays!

Julia, Erika, Hillary, Tim, Charlie, Katie, and the COASST Interns

Watch Out for Phalaropes!

At 55 grams, phalaropes are among the smaller shorebirds that wash up on COASST beaches. Despite their small size, phalaropes are long-distance migrants that breed in the Arctic and head south of the equator in winter. In the lower 48, COASSTers are most apt to find a phalarope in the Fall-Winter during the southward migration; that is, right now!

Easy to identify given their distinctive multi-lobed feet, these tiny birds use their toes to help them gather food by paddling in a tight circle around and around until they produce a vortex (like a small cyclone) underneath their spinning body which sucks up zooplankton and brings prey within reach of the long needle-like bill. Lucky kayakers out for a fall paddle along tidal rips can be surrounded by hundreds of spinning birds intent on fattening up before continuing south.

phalarope

Photos of Red Phalaropes by COASST bird verifier, Charlie Wright. Notice the dark smudge around the eye and the tiny multi-lobed toes. The broader, more triangle-tipped bill shown here separates the Red Phalarope from the slightly smaller and lance-billed Red-necked Phalarope.

The vast majority of the phalaropes COASSTers encounter are Red Phalaropes. A smattering of Red-necked Phalaropes have also been found over the years.

The graph shows the chance of finding a beached phalarope along the outer coast of Washington and Oregon throughout the year. It is the month-averaged (or mean) encounter rate in carcasses per kilometer. The black line shows the seasonal pattern using all of the COASST data, from 2001 to 2015. The smaller red line takes out the winter (November to January) of two years (2002-2003, and 2005-2006) when there were wrecks of phalaropes. What’s interesting is that even with the big years removed, the pattern in time is virtually the same.

With the peak years excluded (focus on the red line), the chance of finding a phalarope is highest in December – but the average survey would have to be 60 kilometers to have a serious chance of finding one. That’s a lot of walking!

baseline

The phalarope (Red Phalaropes, Red-necked Phalaropes and unknown phalaropes) baseline (carcasses encountered per kilometer) calculated across the “average” beach in Oregon and Washington outer coast locations. Data span 2001 to 2015.

In some years, Red Phalaropes seem to run out of gas, and they can be found in abundance if your monthly survey happens during the “carcass-fall” of these tiniest of birds. In 2002-2003, a phalarope wreck lasted from November through January. Carcasses were found all along Washington and Oregon coastlines. The carcass-fall that year was 60-100 times normal and some extreme sites found up to ~15 birds per kilometer (or 1,000 times the non-wreck normal peak!!) A smaller wreck occurred in the winter of 2005-2006. It started slightly later (in December), and fewer COASSTers recorded birds, even though the total number of COASST sites was higher.

bubbles

Phalarope “finds” by COASSTers during the winter of 2002/03 and 2005/06. Bubbles are situated over the COASST survey location, and the size of the bubble is indicative of the number of phalaropes found per km of beach surveyed. Bubbles are color coded by month.

This year we’ve been getting wind of disoriented, emaciated phalaropes coming to shore in British Columbia. Although initially speculated to be associated with an oil spill, birders from Ketchikan, Alaska to Monterey Bay, California have reported seeing numbers of these birds unusually close to shore. And the COASST data have spiked up. Take a look at the very latest COASST data compared to those earlier wreck years.

encounter-rate

The timeseries of phalarope (Red Phalarope, Red-necked Phalarope and unknown phalarope) monthly encounter rates from 2001 to the present. Bars represent the average encounter rate across surveys performed in that month across Oregon and Washington outer coast locations. The black line and yellow shading represent the seasonal baseline encounter rate and its range, respectively, calculated across all years excluding the winter of 2002/03 and 2005/06.

With all of the changes in the coastal ecosystems of Alaska and the lower 48, we’re not sure what to expect this winter. But here’s the early warning for outer coast COASSTers in the lower 48 to be on the lookout for phalaropes, particularly following storms.

A Rare Marine Mammal Washed In

What do COASST staff do on their time off?  Walk the beaches, of course!

And it was on such an excursion that Charlie Wright, the COASST verifier, and his wife Linnaea – both expert birders and natural historians – happened upon a Blainville’s beaked whale.

The dolphin-like "beak" and absence of large teeth helped us conclude that this was a female Beaked whale.

The dolphin-like “beak” and absence of large teeth indicate that this is a female beaked whale.

A what?!?

Beaked whales are one of the oldest and most speciose lineages of cetaceans (whales, dolphins and porpoises), with 22 species documented to date.  Smaller than the large whales, and sometimes mistaken for dolphins, beaked whales have, as the name implies, a dolphin-like “beak” (or rostrum).  Vaguely sausage-shaped, they also sport short stubby flippers (front limbs), a small dorsal (back) fin, and a plain un-notched tail (also known as a fluke).  Males have two enormous teeth that look more like spade-shaped tusks, which they apparently use to fight other males for access to females.  These teeth vary by species and allow easy identification of males.  With no teeth to examine, the whale Charlie and Linnaea happened upon was a female.

Note the small dorsal fin!

Note the small dorsal fin.

Relatively unseen and unknown animals that range widely across the world’s oceans, beaked whales are deep divers that can submerge in the hunt for squid and deep-sea fish for over an hour.  No wonder people don’t often see them.  But they do wash ashore.  In fact, in 2014 a previously unknown species of beaked whale washed up on Zapadni Beach on St. George, Pribilof Islands (a COASST beach!).

All of the excitement over this rare find got us wondering, what kinds of marine mammals have COASSTers been recording over the years?  Although COASST doesn’t “officially” collect marine mammal data, since 1999 COASSTers have often reported what they find.  From 2000 through the present, just over 1,200 marine mammals were reported, most to group, like “seal” or “dolphin/porpoise.” Just over half (644) were identified to species.  In our new COASST protocol, we’ve added specifics about how to record and take photos of any beached marine mammal observed.

What can we say about these data?

First, we focused on the marine mammal carcasses identified to species.  These data are presented with numbers in parentheses under each photograph indicating the total count.  The winner?  Harbor seals, followed by sea otters and California sea lions.  Not a single beaked whale!  Notice that although there are slightly more species of cetaceans (8 in total compared to 7 pinnipeds), COASSTers are far more likely to find a pinniped (420 individuals versus only 63 for cetaceans).

Marine mammals reported by COASST volunteers and identified to species from 2000-present.

Marine mammals reported by COASST volunteers and identified to species from 2000-present.

Second, we mapped all of the species groups, from large whales to sea otters, as a function of location, from northern California north to the Bering and Chukchi Seas.  The “image collage” adjacent to each mega-region (we’ve combined the Strait of Juan de Fuca, Puget Sound and the San Juan Islands into “Salish Sea”) shows which species groups are found where.  The size of the photograph is proportional – bigger photos literally mean more of that group is found, and the image indicates which species in the group was identified most often.

In California, the group “sea lions and fur seals” dominate, with the vast majority of identified finds being California (of course!) sea lions.  North in Oregon and coastal Washington, “true seals” become more abundant in the finds identified to species.  In the Salish Sea, as many COASSTers can attest, harbor seals dwarf all other marine mammal finds. In fact, the chance of finding a harbor seal is not that much different from the chance of finding a beached bird (the recent Rhinoceros Auklet mortality event being an exception).

Sea otters, unknown from our California beaches and a true rarity along Oregon, become relatively more abundant along the Washington outer coast, and dominate the Gulf of Alaska beaches.

And then there are the finds in the Bering and Chukchi Seas.  Notice that the only photograph in common with the other COASST mega-regions is the sea otter, everything else is different.  “True seals” dominate, but the species isn’t harbor, it’s spotted.  Rather than sea lions, COASSTers in these regions are more likely to find fur seals.  Not surprising when you consider that the Pribilof Islands (home to 8 COASST beaches) support breeding rookeries of Northern fur seals numbering in the hundreds of thousands.

Marine mammal species abundance as a function of location, from northern California north to the Bering and Chukchi Seas.

Abundance by location, from northern California north to the Bering and Chukchi Seas.

Documenting beached marine mammals is an important objective for COASST.  So keep an eye out for the odd flipper, fluke or paw as you’re searching the beach.  With marine mammal populations shifting in abundance throughout the COASST range, we’re in the perfect position to create the definitive baseline.

A Lingering Summer on Lopez Island

jp-friend(Photo Credit: Gene Helfman)

Last weekend, amidst a blaze of late summer sun and warmth, I had the privilege to deliver a talk at the Lopez Library as part of the National Public Lands Day celebration co-hosted by the San Juans National Monument on Lopez and Kwiaht, among others, on COASST findings.  Our bird verifier, Charlie Wright, made an appearance the next day at the “Beer and Birds” event in Lopez Village.  Between us, we had the island well-covered.

COASSTers throughout our geographic range can attest to upticks in beachcast carcasses over the last several years, from Cassin’s Auklets along the outer coast of the lower 48, to Common Murres in Alaska, to Rhinoceros Auklets in Puget Sound and the Strait of Juan de Fuca.  There is really something serious going on, what with marine heat waves (aka “The Blob”) and El Niño shifting the marine food-web out from under the birds.

The graph below shows the long-term average “baseline” – the black line that looks like a heartbeat signal – annually from 2001 through to present for the outer coast of northern California through Washington state.  The pale gray bars represent the actual monthly signal across the years.  When the gray bars soar above the heartbeat baseline, that’s a “mass mortality event”.  You can see two things right away:
1. the frequency of mass mortality events is increasing – the time between them is decreasing.
2. they are getting more severe.

image001

COASST data have been essential in telling these stories – how many birds of which species are found where, and when.  Only the super-human efforts of many COASSTers, often toiling in adverse weather conditions, makes it possible to find out how far from normal things have become.  Then COASST staff and scientists leap into the next phase of working with our science and resource management colleagues to figure out what killed the birds.

For residents of the San Juan Islands, and other localities surrounding the eastern Strait of Juan de Fuca, this year’s big event has been untoward Rhinoceros Auklet mortality.  From Victoria to Orcas to Whidbey to Dungeness, Rhinos have been washing ashore.  COASST and all of our science partners have been closely following this event.  You can get the latest information here.  Saturday morning I went out with Lopez Island COASSTers Cathy and Daphne on a tour of some amazing and special sites along the southern headlands of that island.  A mix of National Monument, Park, and private land, these cliffs interspersed by pocket beaches offer a gorgeous view of the Olympics and Vancouver Island, and a beautiful late summer landscape of burnished grasses and wind-pruned Douglas firs.

This weekend we found exactly what COASSTers would predict – Rhinos!!  What was interesting was where we found them.  Rather than on the beach, all of the (many) carcasses we found were on the headlands overlooking the Strait of Juan de Fuca.  Large waves?  A better explanation was provided by Daphne and Cathy, who let me know that Bald Eagles regularly perched on the spots.  We had found a raptor “fast-food” restaurant littered with the well-plucked leavings of small Alcids.  How did we know they were Rhinos?  Of course, the telltale bill horn gave some carcasses away, as did the diagnostic pale stripe (looks like worn pipping on a well-loved couch) on the leading edge of the wing stretching from wrist to elbow.
img_1446 The diagnostic pale stripe is clearly visible along the edge of these two Rhino wings, which are from two different birds; which I discovered by looking carefully at the wingchord measurement and feather wear pattern. (Photo Credit: Julia Parrish)

unknownAlthough this bird is too-far gone to be a COASST bird (because the bill length can’t be accurately measured), it’s still easy to identify as a Rhinoceros Auklets by the prominent horn.  (Photo Credit: Cathleen J. Wilson)

An Update from Julia’s trip to Newfoundland

COASSTers!  Greetings from the south coast of Newfoundland, where I’m visiting the largest gannet (4-webbed!) colony in the province.  Here I am with Heidi Ballard, one of the COASST Advisory Board members.  It’s a bit of a windy day on Cape St. Mary’s, and the gannet are soaring in place over their colony.  Fabulous!  These birds are related to cormorants and pelicans (but, of course, you already knew that because of the Foot-type Family).

IMG_0678

While at the colony, Heidi and I had the chance to walk the cliffs in search of partridge berries (like small slightly sweet cranberries) and bake apple (gotta say, this bog berry is a Newfoundland original!).  Of course, I found the wing of a young gull, and remnants of murre eggs.  Ever a COASSTer!

IMG_0689

Newfoundland is a fantastic place for watching seabirds and whales, dining on cod, and touring through pristine sub-arctic wilderness.  The people are friendly and warm, and after I figured out that “turr” was actually “murre” we got along well!

IMG_0685

Cheers,

J

Alaska Murre Update

By now, you’ve likely heard the news of the startlingly high number of Common Murres washing ashore in Prince William Sound and beyond, as well as the reports of murres flying inland to the Mat-Su and elsewhere.  In fact, many of you have been out there on affected beaches in Homer, Seward and elsewhere counting the bodies and collecting our baseline data.  Thank you for those efforts, and particularly during the dead of winter.

We don’t know at this point why the murres are coming inshore, and why they are so stressed.  It is obvious that the huge die-offs reported after New Year’s day were exacerbated by a large storm that no doubt pushed many a bird past it’s limit, and definitely pushed all floating material up onto the beaches especially in long fjords (think Seward and Whittier).  There are many folks working on this story, including state, federal and tribal agencies, university scientists and others.  In fact, as we type this, many of those scientists are gathering in Anchorage at the Alaska Marine Science Symposium, where several talks will center on the murre story.

Each and every one of you should know that the COASST data in AK forms the baseline against which these elevated counted can be (and are being!) measured.  It is the data you and others before you patiently collected year in and year out that tells us exactly how many murres should normally be washing ashore (precious few!). Thank you!

Here is the latest infographic, showing the anecdotal reports that we’ve put together.

AK murre

2015 in review: Murres on the Beach

Goodbye 2015! You were a strange year for the North Pacific:  “the blob” stuck around, elevated numbers of Common Murres washed-in throughout the COASST range (and continue to in Alaska, see below),  harmful algal blooms, and lets not forget the Cassin’s Auklet wreck last winter. What does it all mean? COASST is working with partners up and down the coast to try to figure it out. We’re still assembling data from December, and January is in-progress, but here’s a look at the latest story that’s unfolding:

COMU Wreck 2015lower

COASST data show that the annual murre post-breeding mortality signal (August-September) was observed in Alaska and the lower 48 in 2015, and was particularly accentuated along the outer coast of Washington and the northern coast of Oregon.

But in the Gulf of Alaska…

Elevated murre mortality levels occurred both before and after the breeding season, creating a continuous signal stretching from May through to present (December).

COMU Wreck 2015 for Heather_HKB

Maximum COASST beach counts (red circles) are significantly higher than the 2015 monthly averages (yellow circles), and maximum anecdotal reported counts are 1-2 orders of magnitude above that.

Many thanks to our intrepid, dedicated participants who are braving long days on rugged beaches to document the extent and magnitude of this mortality event!

Connections from the Past

You just never know when a past connection is going to resurface.  Kevin Bacon may be 6 steps removed from me, but Kyle Frischkorn, a PhD candidate in biogeochemistry at Columbia University and a budding science communicator is only 4.  This week Kyle published his first science communication article on the COASST program.  Woohoo!!

What’s the connection between a West Coast professor of “seabird science” and an East Coast “molecular oceanographer” studying nitrogen-fixing cyanobacteria with a hankering to expand his science domain into public communication?

In academics, it’s all in the pedigree.  Kyle was an undergrad at the University of Washington who signed up for my Marine Biology course.  And part of that class is a weekend field trip (imagine 5 weekends with 25 freshmen and sophomores who think of the ocean as the thing you lie next to when you go to the beach, all crammed into vans on a early Saturday morning on the way to a salty science adventure – introduced species on the mud flats, invertebrate sampling in the rocky intertidal, 24 hour plankton tows, dead birds on the beach – and you can begin to get an idea…).

Kyle’s first choice was a weekend on the UW Oceanography research vessel Thomas G. Thompson.  When do students ever get their first choice?  He ended up on the beached bird field trip.  Turns out that a beachcast bird is a lot like any other drifter that oceanographers might use to understand ocean currents.  What had started out in his mind as a waste of time suddenly became a cool way to figure out more about ocean flow.  Lightbulb moment!

And, it opened a door in his academic path and in his future career.  From marine biology, to a cool capstone project with marine bacteria to a PhD project at Columbia to a realization that reaching out to the public about how cool science can be is something all scientists should do.

So when Kyle called COASST a few months ago to ask whether he could write his first story about COASST and identified his pedigree back to the COASST field trip in Marine Biology, I was thrilled.  Because you never know when the “pay it forward” every professor hopes to gift their students with will turn into a “pay it back.”  Thanks Kyle!

— Julia K. Parrish, COASST Executive Director

What’s Washed In – October 22, 2015

Hi COASSTers,

It’s been an exciting few weeks. In the office, we’ve been busy taking a look at the Common Murre die-off and gearing up for the official launch of our new marine debris program. Our first trainings are scheduled for Forks (WA), Port Angeles (WA), and Newport (OR) next month. Additionally, COASST Executive Director, Julia Parrish, recently returned from a trip to the White House, where COASST was recognized on multiple fronts as an example of a citizen science program providing useful data to scientists and resource managers. Big thanks to all of you for all of your hard work!

Let’s take a look at what’s washed in recently:pic1
pic2

Here’s a fun one! Barbara and Mike had “never seen anything like this bird” when they came across it during their September survey on South Butterclam in Washington.

Bill 30mm
Wing 28.5cm
Tarsus 34mm

Alaska Foot Key – page 34
West Coast Foot Key – page 22
Choose webbed (go to Q2), completely webbed (go to Q3), four toes: 3 webbed 4th free (go to Q5), tarsus not >12mm across (go to Q6), thin toe or nail only (go to Q7), heel swollen – STOP: Larids.

Alaska Guide
On LA1 –Bill is hooked, Gulls and Kittiwakes (go to LA2). Wing Coloration: triangular dark-white-dark pattern. Go to species pages: Red-legged Kittiwake (immature) LA16 or Sabine’s Gull, LA20 The wing is within the SAGU range (26-29cm) but not outside of reason for RLKI (29-33cm). If we look at “Similar Species” we see that SAGU inner primaries are white, as opposed to gray with white tips. Sabine’s Gull it is! Notice its dark bill with yellow tip (adult!) and dark head (breeding!).

West Coast Guide
On LA1 –Bill is hooked, Gulls and Kittiwakes (go to LA2). Wing Coloration: dark wingtips, primaries without windows. Go to species pages:
Black-legged Kittiwake LA13, wing tips not solid black. Moving on…
Heerman’s Gull LA21, all measurements too small. Hmm…
Red-legged Kittiwake (too rare to be in the guide). Can’t rule it out, so let’s stick with Group: Gulls and Kittiwakes, species unknown and let Charlie work his magic.

Sabine’s Gulls are so rare in the lower 48 that they aren’t even mentioned in the West Coast Guide!pic3

During her June survey on Agate Beach in Northern Oregon, Wendy found quite a bit of bird variety, including this tricky specimen.

Wing 15cm
Tarsus 28mm

Alaska Foot Key – page 34
West Coast Foot Key – page 22
Choose webbed (go to Q2), completely webbed (go to Q3), four toes: 3 webbed 4th free (go to Q5), tarsus not >12mm across (go to Q6), thin toe or nail only (go to Q7), heel flat (go to Q8), foot not huge – STOP: Tubenose: Petrels

Alaska Guide
On TN1 –wing chord is <18cm: Storm-Petrels. Go to species pages:
Fork-tailed Storm-Petrel TN15
Leach’s Storm-Petrel TN17

Tarsus measurement more fitting for FTSP and plumage gray rather than dark sooty brown. No white rump patch. Fork-tailed Storm-Petrel it is!

West Coast Guide
On TN1 –wing chord is <17cm: Storm-Petrels. Go to species pages:
Leach’s Storm-Petrel TN9
Fork-tailed Storm-Petrel TN11

Tarsus measurement more fitting for FTSP and plumage gray rather than dark sooty brown. No white rump patch. Fork-tailed Storm-Petrel it is!pic4

The Harps found the 7th COASST bird of its kind on their July survey on Ediz Hook in Washington.

Bill 30mm
Wing 28.5cm
Tarsus 34mm

Alaska Foot Key – page 34
West Coast Foot Key – page 22
Choose free (go to Q9), 4:3 front, 1 back (go to Q10), two toes are fused! STOP: Kingfishers are as far as the COASST guides will take you—this one is a Belted Kingfisher.pic7pic8

Keith found this “bucket” on Steamboat Creek in July.  Amanda and Chris identify and translate the object as follows: In the small, blue kanji characters on top) 天下一品=Tenka Ippin=”Best thing on Earth” (In the larger white characters in the blue box below) ジヨータみそ=jiyota miso. The contents are probably bean paste that is put into miso soup, among other things. Tenka Ippin is apparently a restaurant chain in Japan that specializes in ramen.

pic9

What a find! Olli sent us this great shark photo from Cape Meares, Oregon that Katherine Maslenikov, Collections Manager at the UW Burke Museum, confirmed to be a salmon shark. Salmon sharks have a slightly bulbous body with a conical snout and are usually found roaming the subarctic and temperate North Pacific. As you might guess from their name, they feed primarily on Pacific salmon, but they will occasionally snack on other bony fish as well. Typically, they are about 6.5-8 feet long, but they can reach up to 10 feet in length!

Seen something on the beach you’ve always wondered about? Send us a photo!

Cheers,
Erika, Julia, Hillary, Charlie, Heidi, Jenn, and the COASST Interns