Quality of clinical information on CT requisitions aids in interpretation of Radiology reports

GIGO applies here, but with much greater consequences. Conversely, good information in results in more valuable consultation out in the form of the Radiology reports. See this article for how the authors “found improvement in quality of histories provided on requisitions for unenhanced head CT after a fairly simple intervention in the ED. In addition to aiding interpretation, improved clinical information significantly reduced time in receiving payment for the studies.” This results in a “win” for all, including likely improved quality of care for patients.

Optimizing Radiation Dose

Standardizing dose description parameters and metrics is an ongoing and very active area in ACR and nationwide. This will be a big help to comparing metrics between institutions and over time. The SSDE (Size Specific Dose Estimate) is a good step in that direction.

But this article also points out the large impact of exam appropriateness on dose. It is an impressive fact that a profound way to lower population dose is to avoid doing inappropriate exams. Tools such as the ACR Appropriateness Criteria or Computerized Decision Support at the point of order entry can empower appropriateness review. And every radiologist needs to increase their awareness of exam appropriateness in daily work.

Educating patients about radiation dose

The ultimate goal is to have a fully informed and well educated patient – this will result in best personalized healthcare and outcomes.

So as far as radiation dose from individual CT exams is concerned, it is good for patients to know what they received – but it is not enough. Patients also need to be educated about the meaning and risk of their radiation dose.

Educating patients about extremely low risk is difficult – as would be true about any very low risk. But, it should be coupled with educating patients about the potential health and healthcare benefits from their CT exam.

This is because what they really need to know is their risk/benefit ratio – from each CT exam. An educated patient who understands their risk/benefit ratio from CT will be a truly informed healthcare consumer.

Who should educate patients about risk and benefit? All of us – all providers. The primary care physician, the subspecialist, the radiologist, the CT technologist, the radiology nurse, PA’s and LPN’s – everyone who contacts the patient can help advance this education and this understanding.

MDCT 2014 speakers weighed in on this subject at the ISCT Symposium in early June.

Applying Appropriate Use Criteria to Medical Imaging Decisions

It is still true that the best way to maximize value and impact on disease while minimizing cost and radiation dose is to do only appropriate exams and not do inappropriate exams. But how to decide what is appropriate? Many of the standard criteria – such as those published by the ACR – are as evidence based as the current peer-reviewed literature evidence will support. But sometimes there may not be scientific evidence available for a hard clinical question – particularly if a randomized trial might be very expensive and take a long time. Under those circumstances, expert opinion is often a pretty good alternative.

Expert opinion can be incorporated into computerized decision support programs but also into daily practice. Indeed, every radiologist is on their own an expert in imaging and its appropriate use – which is valuable if they use this local expertise to guide choice of exams through being a consultant.

Your practice should make radiologist consultation easy to access … and widely known as a valuable service.

See this article.

Significant radiation dose reduction without sacrificing image quality

At the 2014 ISCT-sponsored MDCT meeting in San Francisco – dose reduction was a key theme during all four days.

Iterative reconstruction was a common theme of an overall dose reduction program. While adaptive statistical iterative reconstruction (ASIR) now has been well-shown to reduce average doses by up to 40% without impact on image quality, the hot topic was model-based iterative reconstruction (MBIR) in its various forms.

Consensus is now developing around MBIR being capable of 50-70% dose reductions incremental to adaptive statistical iterations. While image appearance may be somewhat different from that of filtered back projection, it is now pretty clear that such different appearance does not compromise diagnostic power. Indeed, with experience, some radiologists have developed a preference for the image appearance of MBIR.