The Value of Oral Contrast from the patient’s point of view

Oral Contrast

The authors raise this question from a patient-centered approach: “What would patients choose if given the option to drink or not drink oral contrast material, and why? Some patients might prefer a risk-averse approach and prioritize diagnostic accuracy, whereas other patients might prefer a comfort-based approach and prioritize examination comfort. Asking patients how they value these trade-offs can inform an optimal imaging strategy.”

Modern oral contrast (diluted Omnipaque) is tasteless and odorless. Most patients think they are drinking water. But, it significantly increases diagnostic accuracy, particularly in cases involving GI questions.

These authors concluded, “If oral contrast material has any diagnostic benefit, most outpatients (89%) would rather drink it than accept any risk for missing an important finding.”

Optimizing CT Radiation Doses Across Institutions Leads to Dose Reductions

This excellent research from UCSF documents that education about best CT dose practices has a significant impact. The authors state, “The project strategy was to collectively define metrics, assess radiation doses, and move toward dose standardization. This article presents the results of our efforts using a combination of facility-level audit and collaborative efforts to share best practices.”

 

Patients’ awareness of radiation dose and risks associated with medical imaging

In this article, the authors discuss how awareness of dose and risks of medical imaging by patients can facilitate shared decision making and reduce unnecessary radiation exposure.

Revolution CT Scanner at UW Medical Center Department of Radiology

 

New National Dose Levels Established for Common CT Exams

Dr. Kanal’s Research Establishes New National Dose Levels for Common CT Exams

Kalpana M. Kanal, Ph.D., a medical physicist, professor and section chief in diagnostic physics in the Department of Radiology at the University of Washington School of Medicine, Seattle, and colleagues examined actual patient data from the American College of Radiology (ACR) CT Dose Index Registry to develop size-based DRLs that enable healthcare facilities to compare their patient doses with national benchmarks and more effectively optimize CT protocols for the wide range of patient sizes they examine.

The use of DRLs have shown to reduce overall dose and the range of doses observed in clinical practice.

Dr. Kanal’s research is published here in Radiology.

This landmark work is very helpful in benchmarking CT dose levels. It will be widely cited, I predict. Congratulations, Kalpana!

Kalpana M. Kanal, Ph.D.

Adopting Best Practices for CT Radiation Dose Monitoring

In this article, the research conducted by University of Washington Radiology Fellow Dr. Achille Mileto and colleagues highlight the importance of dose monitoring, but also the challenges: “Successful efforts to reduce overall radiation doses may actually direct attention away from other critical pieces of information that have so far been underappreciated, namely the widespread variability in global radiation dose values across clinical operation volumes.” … “These data may provide a foundation for the future development of best-practice guidelines for patient-specific radiation dose monitoring.”

Dr. Achille Mileto from the University of Washington

“We are kind of obsessed with radiation dose reduction, but I think we should keep in our minds the concept of radiation dose optimization, which means trying to adjust the dose to the specific clinical task,” Mileto said. “With technology we are reducing the dose, but we are increasing the room for variability. This is great if you are consistently reducing the dose, but we really want to understand what’s going on in terms of variability. So I think the main lesson is to try to develop best-practice guidelines for patient-specific radiation dose monitoring. I think basically the scenario in the near-term future will be to create some kind of shared library for radiation doses.”

CT technique and technology

This article highlights the wide variation in CT patient radiation dose between similar institutions for similar exams. Recent analysis of ACR dose registry data also suggests there is wide variation amongst different regions of the country.

Such variations suggest that attention to the details of CT technique and technology can produce CT exams at much lower dose – presumably without compromising diagnostic power.

CT colonography

Using model-based iterative reconstruction, CT colonography can be a very low radiation dose method of screening. This article applauds the United States Preventive Services Task Force (USPSTF) approval, cited as a “big win for patients.”

CT dose reduction in assessment of active Crohn’s disease

This article illustrates how iterative reconstruction can be used to markedly lower CT radiation dose without significant impact on diagnostic content in CT exams.

For patients with Crohn’s disease who likely will have multiple CT exams over time, lowering dose is especially important.

Reducing dose via iterative reconstruction technology

As this article demonstrates, iterative reconstruction is a very powerful way to reduce dose without impacting diagnostic ability. Key points of the authors include, “To reduce patient and operator radiation dose involves optimization of medical imaging equipment and best control of the equipment by the operator. … The results of our study confirm in a large patient number reflecting the routine clinical setting that the image noise reduction technology allows a significant reduction in radiation dose.  … The substantially lower radiation dosage achieved in a routine clinical setting with the image noise reduction technique, provide further evidence of the substantial impact of the new technology. They indicate potential reduction in radiation dosage in invasive and interventional cardiology with more diffusion of newer radiation technology in clinical practice.”

Novel iterative reconstruction method for reducing CT dose

All iterative reconstruction techniques powerfully reduce CT radiation dose in the 40-80% range – without compromising diagnostic power. And they all continue to be refined and to evolve, as this article illustrates. While the “look” of CT images may change from the noise removal, the diagnostic power is not compromised despite the substantial dose reduction. As radiologists, working with change is our future. The old days of nothing but filtered back projection are in our history but not in our future.

The effect of trauma backboards on CT radiation dose

This article provides another neat bit of knowledge to consider when looking for lowest dose – though this is multi-factorial.

[Excerpt below]Backboard use in ED Figure 6

“Rate of backboard use during CT examinations of the chest–abdomen–pelvis performed in the ED from 1 January 2010 to 31 December 2012 (n=1532). Note the dramatic drop in backboard use in 2011 after multidisciplinary implementation of a policy for prompt removal of patients from backboards using primary clinical survey rather than waiting for a CT examination.”

Should cumulative radiation dose be tracked?

Guest blog by Kalpana M. Kanal, PhD, Direc­tor of Diag­nos­tic Physics Sec­tion and Pro­fes­sor in the Depart­ment of Radi­ol­ogy at Uni­ver­sity of Washington

In a recent article published online1, the authors state in their introduction that radiation dose risk is cumulative and an increasing number of patients are undergoing multiple follow-up procedures at regular intervals. Is cumulative dose of concern in patients who have repeated scans? The jury is still out on this question. There is support for tracking cumulative dose2 as well as thought that cumulative dose should not be given any importance when making decisions about individual patients3, 4.

Radiation risk is based on the linear no-threshold model which states that all radiation exposure carries some risk but these need to be weighed against the benefits of the radiation exposure. This linear relationship implies that irrespective of which CT scan a patient is receiving, the absolute risk is the same. There is no increase in sensitivity from the increasing dose received from repeated CT scans, only an accumulation of probability. The linear no-threshold model would break down and not make any sense if there was an increase in sensitivity from repeated scans.

Consider the analogy of driving to work every day which has a risk of a fatal automobile accident associated with it. We do not keep track of the number of times we have driven in the past and its influence on whether we drive tomorrow or not. Similarly, as far as medical decisions are concerned, cumulative dose should not play a factor in deciding if a CT scan should be ordered or not. The benefit of getting the CT may far outweigh the risks. Also, individual risks are hard to quantify as all our risk models are based on large population data.

It is very important that we do not misuse the patient history information about previous scans to influence our medical decision today. Educating the physicians and the public on this is paramount to avoid such misuse.

References:

  1. Roobottom CA and Loader R. Virtual Special Issue Radiation dose reduction in CT: dose optimisation gains both increasing importance and complexity! Clinical Radiology, 2016; 71(5): 438–441.
  2. Sodickson A, Baeyens PF, Andriole KP, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 2009; 251: 175-84.
  3. Durrand DJ, Dixon RL, Morin RL. Utilization Strategies for Cumulative Dose Estimates: A Review and Rational Assessment. Journal of the American College or Radiology 2012; 9: 480-485.
  4. Eisenberg JD, Benjamin Harvey HD, Moore DA et al. Falling Prey to the Sunk Cost Bias: A Potential Harm of Patient Radiation Dose Histories. Radiology: 2012; 263(3): 626-628.

The value of CT imaging in clinical decision making

This article illustrates two key points:

  1. CT information is particularly impactful in the ER environment where they need correct diagnoses quickly in order to initiate therapy and triage patients safely from crowded facilities.
  2. Dual energy CT provides incremental diagnostic information in the ER setting but without any incremental radiation dose – so using it routinely for certain indications may be effective.
CT Scanner at UW Medicine

CT Scanner at UW Medicine

Communicating with Patients

There is no question that a radiologist who consults directly adds substantial value for both referring physicians and patients. As we make exams more appropriate, we should probably plan on spending more time as consultants and meet the patients, as this article explains.

Jenny Favinger with patient at SKC Oct 2015

Radiologist at free clinic

Pictured above: UW Medicine Radiology Chief Resident Jennifer Favinger and Resident Derek Khorsand consulting with patients at the Seattle/King County Clinic

Images courtesy of UW GME

Detection of pulmonary nodules with low-dose CT and iterative reconstruction

This article illustrates how much good diagnostic information can be obtained using very low CT radiation doses when screening for lung nodules.

In the screening environment, doing no harm is especially important since so many patients are screened. But detection rates cannot suffer.

Here is encouragement that we can meet both goals with very low dose CT combined with iterative reconstruction.

Low-dose CT enterography

This article pretty well confirms what many have felt: model-based iterative reconstruction (MBIR) lowers radiation dose by 70-80% compared to adaptive statistical iterative reconstruction (ASIR), without loss of diagnostic power/information. While the images do indeed look different because there is much less noise and because of a slightly different pattern in the remaining noise, all the findings are there. Further, the anatomy and the findings are displayed as well or better.

So, in a young patient (under age 45) – especially if they are likely to be getting multiple exams – use of model-based iterative reconstruction is well worth the longer reconstruction time.

(To read more about CT enterography, Radiologyinfo.org is a great resource for patients.)

Reducing dose for CT pulmonary angiography

Paying attention to limiting Z axis coverage yields big dose saving dividends! See this article for results of this study designed to assess the safety and efficacy of radiation dose reduction in hospitals lacking iterative reconstruction.

Gentle and wise use of CT radiation dose

This comprehensive article demonstrates the importance of CT dose monitoring and utilizing strategies to achieve ALARA (as low as reasonably achievable) doses while maintaining image quality for optimal clinical diagnosis. The authors also describe how the use of technology can improve the radiation dose efficiency of CT scanners.

Radiation Dose Management in CT: Is it easy to accomplish?

Guest blog by Kalpana M. Kanal, PhD, Direc­tor of Diag­nos­tic Physics Sec­tion and Asso­ciate Pro­fes­sor in the Depart­ment of Radi­ol­ogy at Uni­ver­sity of Washington

At the AHRA conference in Las Vegas recently, Dr. Pizzutiello, a medical physicist, discussed the complexity of CT radiation management and monitoring in diagnostic imaging. With the growing use of CT exams being performed and radiation dose in CT being a hot topic in the radiology community, it is imperative to monitor radiation dose from the CT exams as well as observe trends over time. Regulations now require that CT dose has to be documented and available on demand, CT protocols be revisited on an annual basis and incidents with high dose CT exams be reviewed. Several states around the US have CT regulations or are in the process of regulation implementation. It is a monumental task to monitor and manage dose, especially for large hospitals.

There are several dose management software products available that can help in managing the dose. Dose management is, however, a team effort and it is not possible to do this effectively without a team of radiologists, technologists, and medical physicists participating in this important task.

At our institution, we have been managing dose using a commercial product, Dose Watch (General Electric Healthcare) and also have a radiation safety committee within the department to review dose trends and make intelligent decisions based on our dose data. We have also been participating in the ACR CT Dose Index Registry since its inception and review our trends and benchmark values to our peer institutions. This is definitely a good idea if one is unaware of dose trends at their institution and how it compares to others around the nation.

Dose monitoring is complex but a necessary patient safety tool and, if well planned, can be accomplished and maintained with the help of dedicated professionals who understand the importance of the task.

The importance of dose alerts

At UW Medicine, we use a dose alert system built into DoseWatch (GE Healthcare) as well as in the individual CT scanners. While this is a good safety mechanism to prevent accidents and notice high dose exams, it’s not the whole answer. As this article points out, “… in practice, CT technique and therefore patient dose depends very much on patient size.”

Size specific dose exposure (SSDE) is a better measure which we will be hearing more about in the near future.

 

Low radiation dose without compromise of image quality

This article illustrates that Radiologists’ perceptions of image quality and content change as they become accustomed – over time –  to the different noise pattern of the various types of iterative reconstruction.

In fact, no spatial resolution or low contrast resolution is lost with iterative reconstruction techniques – and diagnostic power is maintained.

Our work here at UW Medicine agrees with this report.

And it is important to know this because iterative reconstruction can result in 30%-60% dose reduction for all types of CT, without loss of diagnostic power.

Impact of education and awareness on reducing radiation dose

Guest blog by Kalpana M. Kanal, PhD, Director of Diagnostic Physics Section and Associate Professor in the Department of Radiology at University of Washington

In a recent article, radiation dose was dramatically reduced when technical changes combined with radiation safety initiatives were implemented for adult and pediatric patients undergoing procedures in a cardiac catheterization lab. The air kerma was compared between the first year and the final year of the study. Radiation safety initiatives such as formation of a safety committee, dose reporting and fellow training were implemented into the practice along with technical changes such as reduced dose rates and removal of grid for smaller patients. Considering all procedures, the air kerma decreased by 61% which was significant. For pediatric patients in age range 10-17, the air kerma decreased by 74% which is important as these patients are at higher risk than adults.

This study is important as the patients undergoing cardiac catheterization procedures typically receive high doses and are also potentially repeat patients.  This study demonstrated that increased provider awareness combined with radiation safety initiatives, education and technical changes does have an impact on reducing radiation dose.

Achieving appropriate radiation dose for coronary CT angiography

This is an interesting addition to the sophistication of systematic lowering of kVp during CT coronary angiography. Of course, such sophistication strongly supports 30% dose reduction without compromising diagnostic power.

Reducing radiation dose for CT enterography

Since many patients who get CT enterography have repeated exams (inflammatory bowel disease, etc.), Model Based Iterative Reconstrucion has primarily been used to markedly reduce radiation dose while maintaining acceptable image quality.

However, this might be another application – especially if the patient will have only one such exam.

Educating patients about radiation dose

The ultimate goal is to have a fully informed and well educated patient – this will result in best personalized healthcare and outcomes.

So as far as radiation dose from individual CT exams is concerned, it is good for patients to know what they received – but it is not enough. Patients also need to be educated about the meaning and risk of their radiation dose.

Educating patients about extremely low risk is difficult – as would be true about any very low risk. But, it should be coupled with educating patients about the potential health and healthcare benefits from their CT exam.

This is because what they really need to know is their risk/benefit ratio – from each CT exam. An educated patient who understands their risk/benefit ratio from CT will be a truly informed healthcare consumer.

Who should educate patients about risk and benefit? All of us – all providers. The primary care physician, the subspecialist, the radiologist, the CT technologist, the radiology nurse, PA’s and LPN’s – everyone who contacts the patient can help advance this education and this understanding.

MDCT 2014 speakers weighed in on this subject at the ISCT Symposium in early June.

Studies Offer Hope for Future CT Protocol Comparisons

recent study featured in the Journal of Computer Assisted Tomography touches on the perennial issue for radiology researchers studying and evaluating the effectiveness of different low-dose protocols. The topic brings the need for accurate CT dose reporting to the forefront, as researchers use different techniques to compare dose levels without relying on unnecessary CT scans in the same patient.

At the Mayo Clinic, researchers have used iterative reconstruction to acquire half-dose virtual colonoscopy exams to compare with full-dose exams. Previously, radiological researchers have relied on phantom studies to approximate dose differences among different protocols, or on patient division, in which patient groups (that are similar but never match precisely) undergo different scan protocols to approximate dose differences.

The issue, however, is that radiation dose and image quality must be compared in every patient, not just groups, because discrepancies in patient shape, cardiac output, lesion pathology, and other factors are highly individualized. The study continues, “matched-cohort research studies can’t evaluate the impact of noise reduction on reader performance for identifying findings, and even back-to-back full- and half-dose studies cannot control for the effect of phase enhancement on lesion conspicuity.”

Both of these points are valid. But, there is hope in the form of positive scientific studies on the way. Research from the University of Washington will soon be published in the American Journal of Roentgenology involving patients with cirrhosis and hypervascular liver tumors. This research offers valuable information for the future of low-dose CT reconstructed with multiple techniques from the same data set when comparing lesion detection.

Additionally, research involving the challenge of scanning the same patient twice with two different dose levels is ongoing. The Institutional Research Board has approved this study at a number of institutions, which analyzes patients who are scanned with ASIR and then full-iterative techniques. Stay tuned for full data available next year.

While these challenges do indeed exist, these ongoing studies offer hope for the effectiveness of low-dose protocols and understanding which protocols work most effectively.

Radiology on the Horizon: Can a Pill Prevent Cancer?

In July’s Radiology, a new study was featured that suggests that a new pill can prevent DNA damage that might lead to cancer. Researchers analyzed DNA double strand breaks (a precursor lesion to cancer) before and after X-raying human blood that had been mixed with the pill, a compound of antioxidants and glutathione-elevating agents.

At this point, the most common way to prevent radiation damage, which can damage the DNA, is lowering the radiation dose level and exposure timeshielding, and staying away from radioactive sources. However, further research may prove that this pill could be an additional way to prevent radiation damage. According to this study, there was a 58 percent reduction in double strand breaks from subjects who ingested the compound one hour prior to imaging.

The idea is in its first stages so it remains experimental and esoteric, but my esteemed colleague, James Brink, MD, from Yale has done an analysis of the research. He says:

“The study was very exciting from a methodological standpoint. I was impressed with the methods by which the authors were able to assess the formation of double strand breaks in response to low doses of ionizing radiation using the fluorescent tagging technique.

I’m respectful of the challenges, but without a clear-cut identifiable clinical benefit, we only have a laboratory benefit. While many lab studies on the biochemistry of antioxidants have been encouraging, some clinical studies have not shown antioxidants to be beneficial to subjects. That’s why we’d want to be cautious about jumping the gun.”

Though additional research must be done to assess the widespread benefits of the use of this compound prior to imaging, its potential benefits could be great for radiation damage reduction.

Study Offers Promising Benefits for Iterative Reconstruction

At UW, we are outspoken for our support of adaptive statistical iterative reconstruction (ASIR).  As a big proponent of the method, I find this write-up from Radiology to be a landmark article, and the research it highlights, very impressive work.

A team of researchers recently confirmed that iterative reconstruction allows significant CT radiation dose reductions for patients undergoing urolithiasis imaging, without unintended decreased image quality or diagnostic confidence.

Urolithiasis is a common condition, with high likelihood (estimated at 75 percent) of recurrence amongst individuals diagnosed. Therefore, imaging scans are a regularity for those patients with the disease. It is important to treat these patients with the lowest radiation dose possible, as to alleviate fear of potentially excessive radiation.

For the 25 patients involved in the study, image quality was significantly boosted by adding iterative reconstruction, while dose was reduced by about 85 percent, thanks to the ultra-low dose. While previous studies report substantial degradations in imaging quality, 80 percent of the images acquired in this study had suboptimal image quality.

This study is just further evidence of the promising benefit of ASIR. I firmly believe that every imaging site with access to the protocol should use it regularly as to lower dose by 80 percent in frequently performed exams.

To learn more about iterative reconstruction, please click here!

The Image Wisely Campaign: Take the Pledge Today!

If you work in radiology, chances are that you are aware of the Image Wisely campaign. Created by the Joint Task Force on Adult Radiation Protection (made up of members of the American College of Radiology and the Radiological Society of North America), the American Association of Physicists in Medicine (AAPM), and the American Society of Radiologic Technologists (ASRT), the campaign strives to lower the amount of radiation used in medically necessary imaging studies and to eliminate unnecessary procedures.

I am proud to say that I have taken the pledge, with over 12,000 other health care professionals, to image wisely by optimizing the use of radiation when imaging patients.

The Image Wisely campaign is a very impactful undertaking which deserves the attention and participation from all of us in Radiology. The pledge raises awareness and commitment to maximizing the ratio between information obtained for minimal dose utilization. In addition, the pledge assists with low dose protocols and good practices, plus equipment operation is included.

I urge all to read the website closely and understand the goals of the campaign. Then take the pledge today!

More Information on the Image Wisely Campaign.

Frequent CT Scanning Not Linked to Cancer Diagnosis

study published in a recent issue of the Journal of American College of Radiology asserts that CT -induced cancers are more likely to occur amongst rarely scanned young adults, as opposed to frequently scanned patients–the group that many assumed was at the highest risk for radiation induced cancer diagnoses.

It is still true that a definite relationship between cancer induction and less than 100 mSv of radiation has never been proven. This is assumed, for safety’s sake – based on proven relationships with much higher doses of radiation. Remember, a typical CT of the abdomen and pelvis in the modern world is about 6-10 mSv.

The other variable that has never been proven is the assumption that the risk from multiple scans which are widely spaced in time is additive. In fact, we know that the body has tremendous capacity to heal and repair any kind of damage – so any damage from a single event of low dose radiation may be fully repaired before a second event occurs. Hence the effect may not be at all additive.

So… results like those found in this article are not surprising.

Nothing, however, should lessen our vigilance about striving for as low a radiation dose as possible for all medical diagnostic imaging applications. In a world of unknowns (and possibly unknowable’s), that’s just common sense.

Face Time with Patients Helps Increase Low Dose Understanding

A recent article in Health Imaging discusses a study that caught my eye. According to the study, the article noted, 80 to 90 percent of radiologists remain “invisible to their patients and approximately half of the public is unaware of whether radiologists are physicians or technicians.” In effect, the “commoditization of radiology is becoming a pressing concern to many practitioners.”

The authors of this study provide a good solution: “By offering an even higher level of personalized service through direct communication, radiologists can dispel this viewpoint by showing patients that they customize imaging examinations to fit each patient’s individual healthcare needs.”

I find this relates to my own experiences as a radiologist and, in a way, to the low dose movement. One way to lower the dose of CT is to not do inappropriate CT scans. How do you decide what is inappropriate?

This is where the radiologist (a physician) as a knowledgeable advisor (who consults with other physicians about imaging) comes in.

Face time with patients can help them understand this role. It can also help them understand that lower dose in their appropriate CT exams is possible without compromising the diagnostic power of the exam – again, achieved through a knowledgeable radiologist designing the CT exam and monitoring the conduct of executing the exam.