Decreasing radiation dose in CT for COPD patients

Study concludes that ultralow-dose CT may substitute for standard-dose CT in some COPD patients

There are at least three different generations of iterative reconstruction, all of which enable substantial CT dose reductions without compromise of diagnostic power. While earlier versions of IR yielded 30% dose reductions, those with model-based IR or some blend thereof can result in 50-80% patient radiation dose reductions – with even better spatial and low contrast resolution. Access the full article on this study.

Risk Model Emerges for CT Lung Cancer Screening!

A new risk model for lung cancer was recently highlighted in the August 21 issue of Annals of Internal Medicine. According to the report, the Liverpool Lung Project (LLP) risk model was developed to determine, based on specific and sophisticated assessments, which individuals would benefit most from CT lung screening.

The LLP risk model has a strong ability to predict lung cancer, and, according to principal investigators, does so better than smoking duration or family history. In fact, this data has been confirmed by researchers from the University of Liverpool, as well as several U.K. centers, the U.S. National Cancer Institute, and the Harvard School of Public Health.

Unlike some other major diseases, like breast cancer and heart disease, lung cancer, thus far, has lacked adequate identification tools to determine which patients should be targeted to maximize screening benefits, and minimize its potential harms. Identification of those with the highest risk for lung cancer, a disease which now kills upwards of 1 million annually, will make the best use of the benefit-harm ratio.

Though other risk models have been created, none have been able to successfully apply to all of the world’s population. The LLP could overcome these challenges, though, as it accounts for important risk factors that others skip, including history of pneumonia, non-lung cancer, and asbestos exposure, among family history and smoking history.

The model certainly appears a good way to improve patient selection. As always, the key inscreening exams is to do no harm. Even for those patients deemed appropriate for screening by the LLP, the best approach is with ultra-low dose CT— such as done with model based iterative reconstruction.

To learn more about the LLP, please click here!

Low-dose Lung Cancer Screening Too Costly? No…

I recently came across a study that questioned the cost- effectiveness of low-dose CT scans for lung cancer screening. As I’ve discussed before, there is sufficient and sound research validating that among high- risk individuals, low-dose lung cancer screening is a life saving process. However, this article claims that the medical imaging procedures may be too costly for the United States, “a nation struggling to control growing health care costs, even though some lives would be saved.”

This article clearly shows how charges relate to the execution of healthcare. At standard charges, screening CT of patient’s at high risk for lung cancer may not be cost effective. But, if these are regarded as add-on incremental cases and are priced at marginal cost (approximately $200), the screening equation may change and become financially viable from society’s prospective.

As with any screening program, the first caveat is to “do no harm” – hence an ultra-low dose CT technique would be advantageous. Similarly, figuring out how to keep the cost way down will be critical. I think we can….