Hongzhou Lin; A Generic Quasi-Newton Algorithm for Faster Gradient-Based Optimization

June 6, 2017, 4pm
PDL C-401
Hongzhou Lin, Inria Grenoble

In this talk, we propose a generic approach to accelerate gradient-based optimization algorithms with quasi-Newton principles. The proposed scheme, called QuickeNing, can be applied to incremental first-order methods such as stochastic variance-reduced gradient (SVRG) or incremental surrogate optimization (MISO). It is also compatible with composite objectives, meaning that it has the ability to provide exactly sparse solutions when the objective involves a sparsity-inducing regularization. QuickeNing relies on limited-memory BFGS rules, making it appropriate for solving high-dimensional optimization problems. Besides, it enjoys a worst-case linear convergence rate for strongly convex problems. We present experimental results where QuickeNing gives significant improvements over competing methods for solving large-scale high-dimensional machine learning problems.