ECMO Strategies for Refractory Respiratory Failure: The Who, How and Why

Christine Lasich RN, BSN, CCRN
Randall/Emanuel Severe Cardio-pulmonary Failure and ECMO (RESCUE) Center.

The Extracorporeal Life Support Organization
2013 Award for Excellence in Life Support

- Demonstrates
- High quality standards
- Specialized equipment and supplies
- Defined patient protocols
- Advanced education of all staff members

www.ELSO.org

NO DISCLOSURES

- No financial relationships to disclose
- Any reference to a specific brand or product is not intended as an endorsement, but rather a reflection of the device or product with which we are familiar.
OBJECTIVES

† Describe the clinical indications for ECMO support and discuss how ECMO supports oxygenation and ventilation
† Describe nursing actions required to prepare a patient for initiation of ECMO
† Identify the unique multisystem nursing considerations for adult patients on ECMO

The ECMO team

Clinical

- Nursing – Bedside
- Nursing – ECMO Specialist
- Perfusionist
- Respiratory Therapist
- Physician
 - Surgeon
 - Critical Care
- Interventional Radiology
- Palliative Care/Social Worker
- PT/OT/Speech Therapy
- Dietitian

Administration

- ECMO Manager
- ECMO Director
- ECMO Coordinator
- Registrar
- PI Coordinator
- ECMO Bedside Educator
- ECMO Specialist Educator

Extracorporeal Membrane Oxygenation (ECMO): What?

† Mechanical cardiopulmonary or pulmonary support
† May be configured Venoarterial (VA) or Venovenous (VV)
† Lungs no longer primary site of oxygenation and ventilation
The Cannulas

The Pump
Centrifugal pumps
- Most prevalently used
- Improved performance with less complications
- Preload and afterload dependent

The Oxygenator
- Hollow fibers (<0.5mm in diameter) coated with polymethylpentene
- Allow diffusion of gas but not liquid.
- As blood flows through the oxygenator, “sweep gas” (oxygen) is piped through the inside of the hollow fibers
- Oxygen and CO₂ diffuse across membrane
The Circuit

ECMO: How?
Physiology of Extracorporeal Support

It comes full circle...

Flow and Sweep
- Flow = quantity of blood delivered (L/min)
- Sweep = Flow rate of oxygen from blender to oxygenator

ECMO CIRCUITS
Rotoflow
Cardiohelp
Anatomy of an ECMO Circuit

- Essential Components:
 - Cannulas
 - Tubing
 - Pump
 - Oxygenator
 - Gas Blender
 - Heat exchanger
 - "Bridge"
 - O2 Sat measurement
 - Bubble detectors
 - Monitors and alarms

The artificial endothelium
aka – the ECMO circuit

ECMO and Heparin

Anticoagulation is essential to prevent clotting in the ECMO circuit

Oxygenator

Centrifugal pump

This makes bleeding the #1 risk factor related to ECMO
Extracorporeal Membrane Oxygenation (ECMO)

Does not “cure” anything

It takes over the work of the heart or lungs while they heal

ECMO: Why?

+ Improving efficacy and outcomes with advent of new technology
+ Increasing patient volumes = more experience = more informed practice

Conventional Ventilation of ECMO for Severe Adult Respiratory Failure (CESAR)

+ 180 patients randomized to either conventional management group or consideration for ECMO treatment.
+ Eligible patients had potentially reversible respiratory failure and met strict entry criteria.
+ Findings: 6 month survival rate 63% versus 47% for control group.

EOLIA trial
- ECMO to rescue lung injury in severe ARDS (EOLIA)
- Ongoing international randomized controlled trial
- Daniel Brodie

ECMO: Where? Regional Referral Program
- ECMO care requires a trained, multidisciplinary team
- ECMO patients have improved outcomes when cared for at experienced, high volume centers
 “... advanced critical care for profound ARDS, including ECMO, represents the type of time-dependent and high-reliability practice that might best be provided in a focused setting in which the provider and systems aspects of performance would benefit from a high density of experience.”
 - Michaels et al. (2013)

Why Transfer?
- **CESAR TRIAL**: “We recommend transferring of adult patients with severe but potentially reversible respiratory failure, ..., to a center with an ECMO-based management protocol to significantly improve survival without severe disability.” - Peek et al. 2009
- **JAMA**: “For patients with H1N1-related ARDS, referral and transfer to an ECMO center was associated with lower hospital mortality compared with matched non-ECMO-referred patients.” – Noah et al. 2011
Who Needs ECMO?

- Refractory ARDS
- Pneumonia
- Sepsis
- Severe respiratory failure
- Shock
- Near Drowning
- Bridge to transplant
- Trauma

ECMO Contraindications

** All Contraindications are relative **

- Related to patient’s premorbid condition:
 - Age and size
 - Contraindication to anticoagulation
 - Chronic condition associated with poor outcome
 - Underlying terminal condition not related to ARDS
 - Limitations to care (code status)

- Related to treatment of current illness:
 - Greater than 7 - 10 days on mechanical ventilator with peak airway pressure > 30 cmH2O and/or FiO2 > 0.8

** Must have an endpoint to care **
VA vs VV ECMO

CARDIAC FAILURE
- VenoArterial

PULMONARY FAILURE
- VenoVenous

VenoArterial ECMO

Cardiac
- May be applied for management of cardiac and/or respiratory failure
- Blood access via central vein and central artery, primarily femoral
- Controls up to 80% of patient’s total cardiac output (CO)

VenoArterial ECMO

Indications
- Patients who cannot wean from cardiac bypass
- Refractory cardiogenic shock
 - Bridge to VAD
 - Bridge to transplant
 - ECPR

Must have endpoint to care
VenoVenous ECMO

Respiratory

- Provides pulmonary support only
- Relies on the patient’s native heart function to circulate the newly oxygenated blood
- "IV Oxygen"
- Blood access via femoral and/or internal jugular vein

VenoVenous ECMO

Indications

- Severe Refractory Respiratory Failure from potentially reversible cause.
- Type I (Hypoxemic) Respiratory Failure (severe) with P:F <80 on FiO2 >90% with a Murray lung injury score of ≥ 3.0.
- Type II (Hypercapnic) Respiratory Failure with a pH ≤ 7.2.

Acute Respiratory Distress Syndrome (ARDS)

- No effective pharmacological treatment
- Cornerstone to therapy remains supportive care with mechanical ventilation
- ARDS Network recommendations for volume and pressure limited ventilation strategies associated with decreased mortality
- Despite ARDSnet strategy, some patients continue to decline
Current definition of ARDS aka, the "Berlin Definition":

- Mild ARDS (PaO₂ to FiO₂ ratio 200 – 300)
mortality: 27%
- Moderate ARDS (PaO₂ to FiO₂ ratio 100 – 200)
mortality: 32%
- Severe ARDS (PaO₂ to FiO₂ ratio < 100)
mortality: 45%

28% of all ARDS is “severe”

ECMO: When?
Hypoxia becomes refractory to conventional management

- Recruitment maneuvers
- Neuromuscular blockade
- Inhaled NO / EPO
- Prone Positioning
- APRV
- HFOV / HFPV
- ECMO

Hypoxia becomes refractory to conventional management

ECMO: When?
Hypoxia becomes refractory to conventional management

- Recruitment maneuvers
- Neuromuscular blockade
- Inhaled NO / EPO
- Prone Positioning
- APRV
- HFOV / HFPV
- ECMO
KEY POINTS

- Increased ventilator days and high ventilator settings are associated with higher mortality.
- Preferred fewer than 7 intubated days
- The longer the patient has been sick, the longer they will be on ECMO.

Early referral saves lives!

Before going on ECMO

- Baseline labs
 - **Type and Crossmatch**
 - Hct and coag
- Anticipate fluid / blood volume resuscitation
- Place all lines and tubes prior to initiation of anticoagulation
 - Central Lines
 - Peripheral IV
 - Foley Catheter
 - Feeding tube

Transformation

Intensive Care to Operating Room
COMMUNICATION

- Blood bank
- Respiratory Therapy
- Pharmacist
- Operating Room staff
- X-Ray
- Family

Heparin Monitoring for effect:
- ACT (goal ~1.5x normal, 180-220 seconds)
- Heparin level (0.2-0.4)
- Optimize AT III (>80)

Direct Thrombin Inhibitors
- Argatroban
- Bivalirudin
- PTT (45-75)
Cannulation: Going on ECMO
- May be performed in ICU or OR
- Full sterile prep and OR team present
- Deep sedation / paralysis essential
- Heparin bolused (50-100 units / kg) prior to cannula placement
- Coordination between surgeon, perfusion and bedside RNs

This is a critical time. The room needs to be quiet for clear communication

And we’re on….
- ECMO flow slowly increased to maximum tolerated, then decreased to lowest level required for adequate support.
- Sit back and watch the red blood flow…

What could go wrong?
- Patient is bolused with approximately 1 liter of saline from ECMO circuit
- This essentially empties blood from the heart temporarily
Code situations

Bedside Nurse Manages the Patient

- Full ventilator support
- Titrate vasoactive drugs
- May need blood and products
- Prepare code cart and ACLS drugs
- May need to emergently switch to VA

Complications

- **Vessel injury**
- **Lung injury**
- **Thrombus**
- **Air emboli**
- Equipment Malfunction

Occurs less than 5%

Emergencies
Bleeding Emergencies

Massive transfusion

• Time to call the blood bank
• Know your institution’s resources and policies

ECMO is initiated

Oxygenation improves immediately

+ Perfusion improved
+ Myocardial function improved
+ Pulmonary pressures decrease
+ Wean inotropes and vasoactive drips
+ Rest settings on ventilator

Diagnostic Procedures

+ Labs
 ABG guides ECMO therapy
 PTT 45-75
+ Chest X-ray
 Cannula placement
+ Occasional tests
 Echocardiogram
 EKG
 Ultrasound
 CT
Multisystem care of the ECMO patient

- Cardiovascular / Hemodynamic
- Respiratory
- Hematologic Considerations
- Neurologic / Sedation
- Renal
- Metabolic / Gastrointestinal
- Skin
- Family
- Recovery vs. Futility
- Decannulation

Cardiovascular and Hemodynamic Considerations

- VV: Pt. dependent on native hemodynamic physiology
 - Support with inotropes, vasoactives, fluid, blood etc. as indicated
 - MAP >65
- VA: ECMO flow provides primary hemodynamic support
 - May require fluid / blood / vasopressors to augment
 - Maintain MAP 50-70

Additional Hemodynamic Considerations

- Trend markers of perfusion / native heart function
 - Lactate
 - ABGs
 - SvO₂
 - Continuous pulse contour analysis (PICCO™, FloTrac™)
 - VV only
 - Echocardiography
 - Urine output, skin color/temp, cap refill, etc.
- Pulmonary artery catheters?
- Pt. temp controlled by heat exchanger
Infection
Abx
Antiviral therapy (H1N1)

Inflammation
Plasmapheresis
IVIG

Trauma
Surgical repair

Infectious Disease and Pharmacy input is crucial

Treating the Underlying Problem

Respiratory Considerations

The lungs are no longer the primary site of oxygenation and ventilation!!!

3 R’s
Rest
Recover
Recruit

Rest

Reducing pressure and FiO2

ELSO Recs:
Mode: pressure control
FiO2: 0.3
PEEP: 10-15 cmH2O
PIP: ~20 (PEEP + 10)
F: 4-5

LEH:
Mode: Volume Diffusive Respirator (VDR)
FiO2: 0.4
PEEP: 12*
PIP: 24*
F: 15
Percussive Rate = 500

Other: CPAP, MMV, Extubation?

* VDR settings: PEEP = Oscillatory PEEP, PIP = Pulsatile PEEP
What is the VDR?
A pneumatically powered, pressure limited, time-cycled, high frequency flow interrupter.
Delivers smaller, percussive tidal volumes at rates that range between 300-700 oscillations per minute at lower pressures.
Enhances oxygenation, promotes CO₂ clearance and facilitates mobilization of secretions while minimizing barotrauma
Increased secretion clearance necessitates vigilant oral care and secretion maintenance by RN staff

Recruit

- Recruitment maneuvers
 - Positional Therapy
 - Bronchoscopy
 - Aggressive diuresis
 - Ventilator recruitment maneuvers
 - Initiated once lungs begin to show recovery

Additional Respiratory Considerations

- Pulmonary Hypertension Management
 - IV agents: Epoprostenol (Flolan), Nitroglycerin
 - Inhaled agents: Nitric Oxide, Epoprostenol
- Tracheostomy
- Pneumothorax (To drain or not to drain?)
Hematologic Considerations

- Systemic anticoagulation essential
- Bleeding is a major complication of ECMO
 - Visible versus occult
 - Common bleeding sites:

<table>
<thead>
<tr>
<th>Intracranial</th>
<th>Mucous membranes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannulation Sites</td>
<td>Central lines and PIVs</td>
</tr>
<tr>
<td>Surgical sites</td>
<td>GI Tract</td>
</tr>
</tbody>
</table>

- **ICH on ECMO usually extensive and fatal**
- Minimize Hemolysis
 - Monitor Plasma Free Hgb

Bleeding Management

(Focus on prevention)

- Vigilant monitoring
- Coagulation studies
 - Pts, PT/INR, Fibrinogen, Viscoelastography (TEG™ / Rotem™)
 - Cannula sites, IVs, mucous membranes, neuro exam
- Maintain Coagulation factors at acceptable levels
 - Platelets ≥ 50,000*
 - INR ≤ 2.2
 - Fibrinogen ≥ 100,000
- Minimize venipuncture, fingersticks, insertion of tubes/drains, etc.

When Intervention is Required:

(Bleeding Management continued)

- Return coagulation status to normal
- D/C anticoagulant infusion (if necessary)
- Thrombotic dressings
- OR as last resort
Neurologic Considerations
- Maintain sedation and analgesia with least amount required to provide effective support & maintain safety
- Daily awakening trials as soon as tolerated
- Neuromuscular blockade?

Note: Some medications shown to have increased adsorption to circuit and oxygenator

Neuro Assessment
- Sedated and paralyzed?
- Hourly pupil response assessment
- Train of four
- Low threshold for Head CT with neuro change
- Pupilometry
- Near Infrared Spectroscopy (NIRS)
- Bispectral index monitor (BIS)

Renal Considerations
- Euvolemia is the goal
- Diurese aggressively
- Hemofiltration
- CRRT if necessary
 - Directly into circuit
 - HD Catheter

Gastrointestinal / Metabolic Considerations
- Place post-pyloric feeding tube pre-ECMO if possible
- Early consult from dietician
- Enteral nutrition as soon as tolerated
- TPN until tube feed tolerated at goal rate
- Probiotic supplements
- GI continuity
- Stress ulcer prevention
- Blood glucose management per hospital critical care insulin management protocol

Skin Care Considerations
- Eyes
- Mucous membranes
- Blisters
- Pressure points
- Q 2 hour turning and ROM essential
- Continence management

Family Care Considerations
- Include family as much as possible
- Allow family presence in rounds
- Include in plan of care
- Honest and direct communication
- Early palliative care consult
Futility
- Possibility of stopping for futility should be discussed with family at outset of therapy
- Promptly discontinue ECLS when there is irreversible organ damage and no option for transplant
- Definition of irreversible damage depends on the institution and available resources
- Arbitrary timeframes for recovery are discouraged

Signs of Recovery
- Hemodynamic stability
- Patient tolerates decreasing ECMO Flow and Sweep
- Evidence of clearing on CXR and bronchoscopy
- Pulmonary “step-up”

Trial off
- **VV:**
 - Wean flow and sweep to minimal settings
 - Set ventilator to acceptable settings
 - “cap off” oxygenator
 - Maintain ECMO blood flow while monitoring SaO₂, PO₂ and CO₂
- **VA:**
 - Reduce flow
 - Clamp access and return lines
 - Monitor SaO₂, PO₂ and CO₂
 - If VA for cardiac support, ECHO very helpful
Decannulation

- May be performed at bedside if vascular repair not required
- Anticoagulant off for 30-60 minutes
- Get “comfortable”

Program Considerations

- Education and team maintenance
- Intra-hospital Transport
- Inter-hospital Transport

ECMO Education and Team Maintenance

- Formal ECMO education process
- ECMO handbook for bedside nurses
- Skills, drills, simulation, lecture, online SLMs
- Collaborate with Pt. care champions
- Additional mandatory CEUs

Roles
- Bedside RNs
- Transport RNs
- ECMO Specialists

Simulation Lab
Intra-hospital Transport

- Have a plan
- Bedside RN is the team leader
- Clear hallways
- Coordinate with receiving department

Inter-hospital Transport
References

ELSO Adult Respiratory Failure Supplement to the ELSO General Guidelines. Version 1.3 December 2013 Ann Arbor, MI, USA www.elsonet.org

Thank you!