Radiology on the Horizon: Can a Pill Prevent Cancer?

In July’s Radiology, a new study was featured that suggests that a new pill can prevent DNA damage that might lead to cancer. Researchers analyzed DNA double strand breaks (a precursor lesion to cancer) before and after X-raying human blood that had been mixed with the pill, a compound of antioxidants and glutathione-elevating agents.

At this point, the most common way to prevent radiation damage, which can damage the DNA, is lowering the radiation dose level and exposure timeshielding, and staying away from radioactive sources. However, further research may prove that this pill could be an additional way to prevent radiation damage. According to this study, there was a 58 percent reduction in double strand breaks from subjects who ingested the compound one hour prior to imaging.

The idea is in its first stages so it remains experimental and esoteric, but my esteemed colleague, James Brink, MD, from Yale has done an analysis of the research. He says:

“The study was very exciting from a methodological standpoint. I was impressed with the methods by which the authors were able to assess the formation of double strand breaks in response to low doses of ionizing radiation using the fluorescent tagging technique.

I’m respectful of the challenges, but without a clear-cut identifiable clinical benefit, we only have a laboratory benefit. While many lab studies on the biochemistry of antioxidants have been encouraging, some clinical studies have not shown antioxidants to be beneficial to subjects. That’s why we’d want to be cautious about jumping the gun.”

Though additional research must be done to assess the widespread benefits of the use of this compound prior to imaging, its potential benefits could be great for radiation damage reduction.

Patients Want To Know About Radiation Risks

A new study published in the November issue of the American Journal of Roentgenology concluded that patients from the emergency department are more concerned about having their condition diagnosed with CT than about the risk of future cancer from radiation exposure.

Although the patients in this study did not estimate the risk of development of cancer as high, the majority of patients wanted someone to discuss the risk and benefits of testing them. This is not as simple as it sounds. How do we best educate patients about radiation? Who is responsible for educating patients about risks and benefits of radiation exposure from CT – the ordering provider, the radiologist, or the CT technologist?

Right now it seems that nobody is doing such education likely due to time constraints and the fact that it is a difficult topic to discuss.  There is no standardized way to discuss radiation with patients and research shows that many physicians don’t fully understand radiation, radiation doses from common tests or possible risks from exposure to radiation from medical imaging. This is a topic that is not going away. We know what our patients want and need, it’s up to us as their healthcare providers to deliver.