Chronic Kidney Failure: Dual-Energy CTA is Best Bet!

“Don’t Skip the CTA” that’s the word going out to patients with advanced renal failure based on findings of researchers in Baltimore.  In a study presented at June’s International Society for Computed Tomography (ISCT), Dr. Barry Daly demonstrated how CTA using moderate doses of IV contrast negatively affects only a small percentage of patients and provides valuable information that outweighs the chance of adverse effects.

However, because lower dose is better for patients, especially that small portion at risk with normal doses, Daly and his team also did a study of low-kVp, low-contrast-dose CTA in chronic renal failure patients. This technique is possible due to the advances in CT technology that have allowed radiologists the ability to get more out of smaller amounts of iodine.

While the low kVp techniques enabled much lower doses of iodinated contrast and resulted in images that looked great, the dual-energy CT technique may have accomplished this effect even better!

With dual-energy, you get the best of both worlds. You get the benefit of lower kVp effect (kEv in GE units), plus the ability to look at images which are equivalent to 100 or 120 kVp from the same CT raw data. Essentially, you still achieve substantial iodine dose reduction, but also get very dense HU enhancements in vessels and organs.

The bottom line is this: CTA isn’t something that patients with advanced renal failure should think about skipping. There is a too big a risk for going into surgery without one.  The key is finding the safest technique to reduce the dosage level of iodinated contrast while getting the best images.  Dual-energy CT may be the best solution out there.

Radical Breakthrough in the Drive toward Lower Dose

GE recently announced the introduction of a breakthrough low- dose imaging reconstruction technology in Canada. This CT image reconstruction technology, called Veo, is the first Model- based Iterative Reconstruction (MBIR) technique.  The technology is a response to radiologists’ demand for a technique that maximizes CT image clarity and quality while optimizing the dosage level for patients’ safety.

MBIR is indeed a radical breakthrough in the drive toward lower dose CTs. While very computationally intensive, this technique allows marked reduction in patient dose from CT (by up to 80% or greater), yet also provides some improvement in spatial resolution without compromising contrast resolution. How could all that be possible – seemingly defying the laws of physics? The answer is in the much faster computational speeds of the modern computer chip.

The University of Washington will be part of the group assessing the degree to which MBIR, commercially known as Veo, outperforms more traditional CT reconstruction techniques.