New Reconstruction Algorithm Could be Answer to High Radiation Dosage and IBF Correlation

recent study on the high accumulation of radiation dosages in young patients with inflammatory bowel disease brings light to a topic of concern for any CT practitioner. This research, published in Clinical Gastroenterology and Hepatology, concludes that patients with digestive disorders may be exposed to significant radiation doses from abdominal CT over time.

It attests that the radiation levels among patients with gastrointestinal disorders have risen over the last few years. And, mostly due to repeat scanning, over 50 percent of the patients with cumulative exposure exceeding the 90th percentile, particularly those with IBD, were younger than 35 years old.

Here at UW, we recently acquired a new CT imaging reconstruction algorithm- VEO or model based iterative reconstruction.  This lowers radiation dose 60 to 80 percent below that of ASIR reconstruction and 90 percent below that of FBP. The only disadvantage of VEO? It takes about 30 to 40 minutes per case to reconstruct because it is computationally much more intensive.

In planning how to begin using VEO, one of the first patient groups we’ve focused on is young patients with IBD. The use of this technology will help lower the accumulative radiation dose levels among those patients who require regular abdominal screening.

Radical Breakthrough in the Drive toward Lower Dose

GE recently announced the introduction of a breakthrough low- dose imaging reconstruction technology in Canada. This CT image reconstruction technology, called Veo, is the first Model- based Iterative Reconstruction (MBIR) technique.  The technology is a response to radiologists’ demand for a technique that maximizes CT image clarity and quality while optimizing the dosage level for patients’ safety.

MBIR is indeed a radical breakthrough in the drive toward lower dose CTs. While very computationally intensive, this technique allows marked reduction in patient dose from CT (by up to 80% or greater), yet also provides some improvement in spatial resolution without compromising contrast resolution. How could all that be possible – seemingly defying the laws of physics? The answer is in the much faster computational speeds of the modern computer chip.

The University of Washington will be part of the group assessing the degree to which MBIR, commercially known as Veo, outperforms more traditional CT reconstruction techniques.